DiTo97's picture
End of training
ece4bb4 verified
|
raw
history blame
3.95 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-base-patch4-window8-256
tags:
  - image-classification
  - vision
  - generated_from_trainer
datasets:
  - generator
model-index:
  - name: swinv2-base-panorama-IQA
    results: []

swinv2-base-panorama-IQA

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on the isiqa-2019-hf dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0254
  • Srocc: 0.1552
  • Lcc: 0.2308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 10
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Srocc Lcc
No log 0.8571 3 0.2656 -0.1585 -0.1388
No log 2.0 7 0.0658 -0.1810 -0.1277
0.2144 2.8571 10 0.1341 -0.1684 -0.1185
0.2144 4.0 14 0.0562 -0.2382 -0.1379
0.2144 4.8571 17 0.0616 -0.1657 -0.1428
0.0575 6.0 21 0.0594 -0.1501 -0.1185
0.0575 6.8571 24 0.0513 -0.1204 -0.1122
0.0575 8.0 28 0.0417 -0.0693 -0.0987
0.0201 8.8571 31 0.0406 -0.0714 -0.0813
0.0201 10.0 35 0.0343 -0.0236 -0.0385
0.0201 10.8571 38 0.0315 0.0074 0.0011
0.0142 12.0 42 0.0309 0.0218 0.0326
0.0142 12.8571 45 0.0310 0.0381 0.0466
0.0142 14.0 49 0.0299 0.0535 0.0681
0.0097 14.8571 52 0.0314 0.0604 0.0749
0.0097 16.0 56 0.0288 0.0785 0.1049
0.0097 16.8571 59 0.0283 0.0944 0.1269
0.0083 18.0 63 0.0298 0.1022 0.1448
0.0083 18.8571 66 0.0274 0.1118 0.1651
0.0063 20.0 70 0.0286 0.1224 0.1703
0.0063 20.8571 73 0.0283 0.1371 0.1833
0.0063 22.0 77 0.0282 0.1317 0.1944
0.0059 22.8571 80 0.0277 0.1382 0.2035
0.0059 24.0 84 0.0270 0.1479 0.2146
0.0059 24.8571 87 0.0263 0.1500 0.2197
0.0046 26.0 91 0.0269 0.1364 0.2199
0.0046 26.8571 94 0.0259 0.1406 0.2251
0.0046 28.0 98 0.0254 0.1552 0.2308
0.0039 28.8571 101 0.0267 0.1480 0.2261
0.0039 30.0 105 0.0270 0.1489 0.2247
0.0039 30.8571 108 0.0261 0.1576 0.2319
0.0041 32.0 112 0.0268 0.1630 0.2311
0.0041 32.8571 115 0.0282 0.1570 0.2257

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1