FULL-12epoch-XLMRoBERTa-finetuned-CEFR_ner-60000news

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0687
  • Accuracy: 0.3222
  • Precision: 0.6358
  • Recall: 0.8475
  • F1: 0.6074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.087 1.0 1563 0.0917 0.3188 0.7203 0.8273 0.6562
0.08 2.0 3126 0.0747 0.3204 0.7147 0.8331 0.6569
0.0666 3.0 4689 0.0691 0.3211 0.7195 0.8376 0.6624
0.0583 4.0 6252 0.0667 0.3213 0.6889 0.8419 0.6433
0.0514 5.0 7815 0.0650 0.3216 0.7043 0.8433 0.6543
0.0463 6.0 9378 0.0642 0.3219 0.6780 0.8444 0.6362
0.0421 7.0 10941 0.0635 0.3220 0.6759 0.8458 0.6354
0.0385 8.0 12504 0.0644 0.3220 0.6330 0.8470 0.6066
0.0358 9.0 14067 0.0670 0.3221 0.6368 0.8467 0.6068
0.0331 10.0 15630 0.0676 0.3222 0.6442 0.8468 0.6130
0.0309 11.0 17193 0.0680 0.3222 0.6377 0.8472 0.6092
0.0298 12.0 18756 0.0687 0.3222 0.6358 0.8475 0.6074

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
120
Safetensors
Model size
277M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DioBot2000/FULL-12epoch-XLMRoBERTa-finetuned-CEFR_ner-60000news

Finetuned
(2664)
this model