|
--- |
|
library_name: transformers |
|
base_model: csebuetnlp/banglabert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: results |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6504 |
|
- Accuracy: 0.8201 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.2063 | 0.2015 | 250 | 0.7486 | 0.7993 | |
|
| 0.4038 | 0.4029 | 500 | 0.3953 | 0.8140 | |
|
| 0.4264 | 0.6044 | 750 | 0.3772 | 0.8156 | |
|
| 0.3938 | 0.8058 | 1000 | 0.3900 | 0.8146 | |
|
| 0.393 | 1.0073 | 1250 | 0.4148 | 0.8172 | |
|
| 0.2627 | 1.2087 | 1500 | 0.4601 | 0.8247 | |
|
| 0.2864 | 1.4102 | 1750 | 0.4548 | 0.8185 | |
|
| 0.2559 | 1.6116 | 2000 | 0.4390 | 0.8138 | |
|
| 0.2607 | 1.8131 | 2250 | 0.4408 | 0.8215 | |
|
| 0.247 | 2.0145 | 2500 | 0.4906 | 0.8241 | |
|
| 0.1356 | 2.2160 | 2750 | 0.6311 | 0.8177 | |
|
| 0.1462 | 2.4174 | 3000 | 0.6750 | 0.8150 | |
|
| 0.1252 | 2.6189 | 3250 | 0.6950 | 0.8207 | |
|
| 0.1339 | 2.8203 | 3500 | 0.6504 | 0.8201 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|