DipsankarSinha's picture
bangla-sentiment-analysis
d014022 verified
---
library_name: transformers
base_model: csebuetnlp/banglabert
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6504
- Accuracy: 0.8201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.2063 | 0.2015 | 250 | 0.7486 | 0.7993 |
| 0.4038 | 0.4029 | 500 | 0.3953 | 0.8140 |
| 0.4264 | 0.6044 | 750 | 0.3772 | 0.8156 |
| 0.3938 | 0.8058 | 1000 | 0.3900 | 0.8146 |
| 0.393 | 1.0073 | 1250 | 0.4148 | 0.8172 |
| 0.2627 | 1.2087 | 1500 | 0.4601 | 0.8247 |
| 0.2864 | 1.4102 | 1750 | 0.4548 | 0.8185 |
| 0.2559 | 1.6116 | 2000 | 0.4390 | 0.8138 |
| 0.2607 | 1.8131 | 2250 | 0.4408 | 0.8215 |
| 0.247 | 2.0145 | 2500 | 0.4906 | 0.8241 |
| 0.1356 | 2.2160 | 2750 | 0.6311 | 0.8177 |
| 0.1462 | 2.4174 | 3000 | 0.6750 | 0.8150 |
| 0.1252 | 2.6189 | 3250 | 0.6950 | 0.8207 |
| 0.1339 | 2.8203 | 3500 | 0.6504 | 0.8201 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0