results

This model is a fine-tuned version of csebuetnlp/banglabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6504
  • Accuracy: 0.8201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2063 0.2015 250 0.7486 0.7993
0.4038 0.4029 500 0.3953 0.8140
0.4264 0.6044 750 0.3772 0.8156
0.3938 0.8058 1000 0.3900 0.8146
0.393 1.0073 1250 0.4148 0.8172
0.2627 1.2087 1500 0.4601 0.8247
0.2864 1.4102 1750 0.4548 0.8185
0.2559 1.6116 2000 0.4390 0.8138
0.2607 1.8131 2250 0.4408 0.8215
0.247 2.0145 2500 0.4906 0.8241
0.1356 2.2160 2750 0.6311 0.8177
0.1462 2.4174 3000 0.6750 0.8150
0.1252 2.6189 3250 0.6950 0.8207
0.1339 2.8203 3500 0.6504 0.8201

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DipsankarSinha/results

Finetuned
(10)
this model