question_and_answer / README.md
Docty's picture
Training in progress epoch 9
c448f7c
---
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-cased-distilled-squad
tags:
- generated_from_keras_callback
model-index:
- name: Docty/question_and_answer
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Docty/question_and_answer
This model is a fine-tuned version of [distilbert/distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4095
- Validation Loss: 0.6306
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.2112 | 0.6667 | 0 |
| 0.5043 | 0.6306 | 1 |
| 0.4089 | 0.6306 | 2 |
| 0.4124 | 0.6306 | 3 |
| 0.4204 | 0.6306 | 4 |
| 0.4269 | 0.6306 | 5 |
| 0.4218 | 0.6306 | 6 |
| 0.4031 | 0.6306 | 7 |
| 0.4117 | 0.6306 | 8 |
| 0.4095 | 0.6306 | 9 |
### Framework versions
- Transformers 4.47.0
- TensorFlow 2.17.1
- Datasets 3.2.0
- Tokenizers 0.21.0