Stroke Prediction Model
Date 2024-12-19
This model uses a Random Forest Classifier to predict the likelihood of a stroke based on patient details.
Model Details
- Algorithm: Random Forest
- Use Case: Healthcare, Stroke Risk Prediction
- Performance Metrics:
Accuracy: 94.70%
ROC-AUC Score: 0.79
Classification Report:
precision recall f1-score support 0 0.95 1.00 0.97 929 1 1.00 0.02 0.04 53 accuracy 0.95 982
macro avg 0.97 0.51 0.50 982
weighted avg 0.95 0.95 0.92 982 ```
How to Use
This model i created in google colab. Relavant libraries include:
How to Use
This runs in google colab.
Import as per below:
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import random from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.preprocessing import MinMaxScaler
For kaggle
import os import zipfile
For Hugging face
from sklearn.externals import joblib # to save the model
from huggingface_hub import notebook_login from huggingface_hub import Repository
Download the model and load it using `joblib Replace input_data with your data, e.g. [[45, 1, 170, 26]] # Age, Hypertension, Avg_glucose_level, BMI