doplhin-2.1-mistral-7b-dpo-ultrafeedback-binarized-preferences-ipo

This model is a fine-tuned version of cognitivecomputations/dolphin-2.1-mistral-7b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 13.6404
  • Rewards/chosen: -0.4693
  • Rewards/rejected: -0.7026
  • Rewards/accuracies: 0.8234
  • Rewards/margins: 0.2333
  • Logps/rejected: -9.0933
  • Logps/chosen: -6.2746
  • Logits/rejected: -0.8214
  • Logits/chosen: -0.8422

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
17.7871 0.25 700 16.4082 -0.2243 -0.3706 0.7903 0.1464 -5.7735 -3.8245 -1.8423 -1.8837
13.4212 0.51 1400 14.5490 -0.4924 -0.7383 0.8092 0.2459 -9.4501 -6.5058 -0.9174 -0.9510
13.2665 0.76 2100 13.6404 -0.4693 -0.7026 0.8234 0.2333 -9.0933 -6.2746 -0.8214 -0.8422

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DrishtiSharma/dolphin-2.1-mistral-7b-dpo-ultrafeedback-binarized-preferences-ipo

Adapter
(11)
this model