|
--- |
|
language: |
|
- bas |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- generated_from_trainer |
|
- bas |
|
- robust-speech-event |
|
- model_for_talk |
|
- hf-asr-leaderboard |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-bas-v1 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: bas |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 0.3566497929130234 |
|
- name: Test CER |
|
type: cer |
|
value: 0.1102657634184471 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: bas |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: NA |
|
- name: Test CER |
|
type: cer |
|
value: NA |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-bas-v1 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BAS dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5997 |
|
- Wer: 0.3870 |
|
|
|
### Evaluation Commands |
|
|
|
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split |
|
|
|
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bas-v1 --dataset mozilla-foundation/common_voice_8_0 --config bas --split test --log_outputs |
|
|
|
2. To evaluate on speech-recognition-community-v2/dev_data |
|
|
|
Basaa (bas) language isn't available in speech-recognition-community-v2/dev_data |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.000111 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 12.7076 | 5.26 | 200 | 3.6361 | 1.0 | |
|
| 3.1657 | 10.52 | 400 | 3.0101 | 1.0 | |
|
| 2.3987 | 15.78 | 600 | 0.9125 | 0.6774 | |
|
| 1.0079 | 21.05 | 800 | 0.6477 | 0.5352 | |
|
| 0.7392 | 26.31 | 1000 | 0.5432 | 0.4929 | |
|
| 0.6114 | 31.57 | 1200 | 0.5498 | 0.4639 | |
|
| 0.5222 | 36.83 | 1400 | 0.5220 | 0.4561 | |
|
| 0.4648 | 42.1 | 1600 | 0.5586 | 0.4289 | |
|
| 0.4103 | 47.36 | 1800 | 0.5337 | 0.4082 | |
|
| 0.3692 | 52.62 | 2000 | 0.5421 | 0.3861 | |
|
| 0.3403 | 57.88 | 2200 | 0.5549 | 0.4096 | |
|
| 0.3011 | 63.16 | 2400 | 0.5833 | 0.3925 | |
|
| 0.2932 | 68.42 | 2600 | 0.5674 | 0.3815 | |
|
| 0.2696 | 73.68 | 2800 | 0.5734 | 0.3889 | |
|
| 0.2496 | 78.94 | 3000 | 0.5968 | 0.3985 | |
|
| 0.2289 | 84.21 | 3200 | 0.5888 | 0.3893 | |
|
| 0.2091 | 89.47 | 3400 | 0.5849 | 0.3852 | |
|
| 0.2005 | 94.73 | 3600 | 0.5938 | 0.3875 | |
|
| 0.1876 | 99.99 | 3800 | 0.5997 | 0.3870 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.1 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.2 |
|
- Tokenizers 0.11.0 |
|
|