DrishtiSharma's picture
Update README.md
3154c2a
|
raw
history blame
2.85 kB
metadata
language:
  - hsb
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - hsb
  - robust-speech-event
  - model_for_talk
datasets:
  - common_voice
model-index:
  - name: wav2vec2-large-xls-r-300m-hsb-v3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: hsb
        metrics:
          - name: Test WER
            type: wer
            value: []
          - name: Test CER
            type: cer
            value: []

wav2vec2-large-xls-r-300m-hsb-v3

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6549
  • Wer: 0.4827

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00045
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.8951 3.23 100 3.6396 1.0
3.314 6.45 200 3.2331 1.0
3.1931 9.68 300 3.0947 0.9906
1.7079 12.9 400 0.8865 0.8499
0.6859 16.13 500 0.7994 0.7529
0.4804 19.35 600 0.7783 0.7069
0.3506 22.58 700 0.6904 0.6321
0.2695 25.81 800 0.6519 0.5926
0.222 29.03 900 0.7041 0.5720
0.1828 32.26 1000 0.6608 0.5513
0.1474 35.48 1100 0.7129 0.5319
0.1269 38.71 1200 0.6664 0.5056
0.1077 41.94 1300 0.6712 0.4942
0.0934 45.16 1400 0.6467 0.4879
0.0819 48.39 1500 0.6549 0.4827

Framework versions

  • Transformers 4.16.1
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.2
  • Tokenizers 0.11.0