|
--- |
|
language: |
|
- hsb |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- generated_from_trainer |
|
- hsb |
|
- robust-speech-event |
|
- model_for_talk |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-hsb-v3 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: hsb |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 0.4763681592039801 |
|
- name: Test CER |
|
type: cer |
|
value: 0.11194945177476305 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: hsb |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: NA |
|
- name: Test CER |
|
type: cer |
|
value: NA |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-hsb-v3 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6549 |
|
- Wer: 0.4827 |
|
|
|
### Evaluation Commands |
|
|
|
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split |
|
|
|
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs |
|
|
|
2. To evaluate on speech-recognition-community-v2/dev_data |
|
|
|
Upper Sorbian language not found in speech-recognition-community-v2/dev_data! |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00045 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 8.8951 | 3.23 | 100 | 3.6396 | 1.0 | |
|
| 3.314 | 6.45 | 200 | 3.2331 | 1.0 | |
|
| 3.1931 | 9.68 | 300 | 3.0947 | 0.9906 | |
|
| 1.7079 | 12.9 | 400 | 0.8865 | 0.8499 | |
|
| 0.6859 | 16.13 | 500 | 0.7994 | 0.7529 | |
|
| 0.4804 | 19.35 | 600 | 0.7783 | 0.7069 | |
|
| 0.3506 | 22.58 | 700 | 0.6904 | 0.6321 | |
|
| 0.2695 | 25.81 | 800 | 0.6519 | 0.5926 | |
|
| 0.222 | 29.03 | 900 | 0.7041 | 0.5720 | |
|
| 0.1828 | 32.26 | 1000 | 0.6608 | 0.5513 | |
|
| 0.1474 | 35.48 | 1100 | 0.7129 | 0.5319 | |
|
| 0.1269 | 38.71 | 1200 | 0.6664 | 0.5056 | |
|
| 0.1077 | 41.94 | 1300 | 0.6712 | 0.4942 | |
|
| 0.0934 | 45.16 | 1400 | 0.6467 | 0.4879 | |
|
| 0.0819 | 48.39 | 1500 | 0.6549 | 0.4827 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.1 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.2 |
|
- Tokenizers 0.11.0 |
|
|