This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1987
  • Wer: 0.1920

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-mt-o1 --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

Maltese language not found in speech-recognition-community-v2/dev_data!

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1721 18.02 2000 0.3831 0.4066
0.7849 36.04 4000 0.2191 0.2417
0.6723 54.05 6000 0.2056 0.2134
0.6015 72.07 8000 0.2008 0.2031
0.5386 90.09 10000 0.1967 0.1953

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DrishtiSharma/wav2vec2-xls-r-300m-mt-o1

Evaluation results