DrishtiSharma's picture
Update README.md
0cd838f
|
raw
history blame
2.28 kB
metadata
language:
  - rm-vallader
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - rm-vallader
  - robust-speech-event
  - model_for_talk
datasets:
  - common_voice
model-index:
  - name: XLS-R-300M - Tatar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_8_0
          args: rm-vallader
        metrics:
          - name: Test WER
            type: wer
            value: 0.26472007722007723
          - name: Test CER
            type: cer
            value: 0.05860608074430969

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-VALLADER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2754
  • Wer: 0.2831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.927 15.15 500 2.9196 1.0
1.3835 30.3 1000 0.5879 0.5866
0.7415 45.45 1500 0.3077 0.3316
0.5575 60.61 2000 0.2735 0.2954
0.4581 75.76 2500 0.2707 0.2802
0.3977 90.91 3000 0.2785 0.2809

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0