anton-l's picture
anton-l HF staff
Update README.md
d2f1f94
|
raw
history blame
2.32 kB
---
language:
- rm-vallader
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- rm-vallader
- robust-speech-event
- model_for_talk
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-xls-r-300m-rm-vallader-d1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: rm-vallader
metrics:
- name: Test WER
type: wer
value: 0.26472007722007723
- name: Test CER
type: cer
value: 0.05860608074430969
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-VALLADER dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2754
- Wer: 0.2831
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.927 | 15.15 | 500 | 2.9196 | 1.0 |
| 1.3835 | 30.3 | 1000 | 0.5879 | 0.5866 |
| 0.7415 | 45.45 | 1500 | 0.3077 | 0.3316 |
| 0.5575 | 60.61 | 2000 | 0.2735 | 0.2954 |
| 0.4581 | 75.76 | 2500 | 0.2707 | 0.2802 |
| 0.3977 | 90.91 | 3000 | 0.2785 | 0.2809 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0