DunnBC22's picture
Update README.md
a03516f
|
raw
history blame
4.2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: bert-base-cased-finetuned-WikiNeural
    results: []
datasets:
  - Babelscape/wikineural
language:
  - en
metrics:
  - accuracy
  - f1
  - recall
  - precision
  - seqeval
pipeline_tag: token-classification

bert-base-cased-finetuned-WikiNeural

This model is a fine-tuned version of bert-base-cased. It achieves the following results on the evaluation set:

  • Loss: 0.0881
  • Loc: {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955}
  • Misc: {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061}
  • Org: {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449}
  • Per: {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210}
  • Overall Precision: 0.9145
  • Overall Recall: 0.9380
  • Overall F1: 0.9261
  • Overall Accuracy: 0.9912

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20BERT-Base%20Transformer.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Loc Misc Org Per Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1 1.0 5795 0.0943 {'precision': 0.9075480846937126, 'recall': 0.9429051217464316, 'f1': 0.9248888156811068, 'number': 5955} {'precision': 0.8320190720704199, 'recall': 0.8964631495751828, 'f1': 0.8630397565151225, 'number': 5061} {'precision': 0.9151428571428571, 'recall': 0.9286749782545666, 'f1': 0.9218592603252267, 'number': 3449} {'precision': 0.9683036587751908, 'recall': 0.9499040307101727, 'f1': 0.9590155992636372, 'number': 5210} 0.9039 0.9303 0.9169 0.9901
0.0578 2.0 11590 0.0881 {'precision': 0.9282034236330398, 'recall': 0.9378673383711167, 'f1': 0.9330103575008353, 'number': 5955} {'precision': 0.8336608897623727, 'recall': 0.9219521833629718, 'f1': 0.8755864139613436, 'number': 5061} {'precision': 0.9351851851851852, 'recall': 0.9370832125253696, 'f1': 0.9361332367849385, 'number': 3449} {'precision': 0.9728037566034045, 'recall': 0.9543186180422265, 'f1': 0.9634725317314214, 'number': 5210} 0.9145 0.9380 0.9261 0.9912

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3