File size: 2,322 Bytes
7102519
 
 
 
 
 
 
 
 
 
 
 
b74b9eb
5587c74
 
7102519
 
 
 
 
 
 
 
 
 
 
 
 
 
b74b9eb
 
 
7102519
 
 
b74b9eb
7102519
 
 
b74b9eb
7102519
93523cf
 
 
 
 
 
 
 
7102519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74b9eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: canine-c-Mental_Health_Classification
  results: []
pipeline_tag: text-classification
language:
- en
---

# canine-c-Mental_Health_Classification

This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2419
- Accuracy: 0.9226
- F1: 0.9096
- Recall: 0.9079
- Precision: 0.9113

## Model description

This is a binary text classification model to distinguish between text that indicate potential mental health issue or not.

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Mental%20Health%20Classification/CANINE%20-%20Mental%20Health%20Classification.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/reihanenamdari/mental-health-corpus

_Input Word Length:_

![Length of Input Text (in Words)](https://github.com/DunnBC22/NLP_Projects/raw/main/Binary%20Classification/Mental%20Health%20Classification/Images/Input%20Word%20Length.png)

_Class Distribution:_

![Class Distribution](https://github.com/DunnBC22/NLP_Projects/raw/main/Binary%20Classification/Mental%20Health%20Classification/Images/Class%20Distribution.png)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.3429        | 1.0   | 1101 | 0.2640          | 0.9037   | 0.8804 | 0.8258 | 0.9426    |
| 0.1923        | 2.0   | 2202 | 0.2419          | 0.9226   | 0.9096 | 0.9079 | 0.9113    |

### Framework versions

- Transformers 4.26.1
- Pytorch 1.12.1
- Datasets 2.8.0
- Tokenizers 0.12.1