|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: mbart-large-50-English_German_Translation |
|
results: [] |
|
language: |
|
- en |
|
- de |
|
--- |
|
|
|
# mbart-large-50-English_German_Translation |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2342 |
|
- Bleu: 35.5931 |
|
- Rouge1: 0.5803386608353808 |
|
- Rouge2: 0.3939141514072567 |
|
- RougeL: 0.5438629663406402 |
|
- RougeLsum: 0.544153348468965 |
|
- Meteor: 0.5500546034636025 |
|
|
|
## Model description |
|
|
|
Here is the link to the script I created to train this model: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/NLP%20Translation%20Project-EN:DE.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Here is a the link to the page where I found this dataset: https://www.kaggle.com/datasets/hgultekin/paralel-translation-corpus-in-22-languages |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Meteor | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:| |
|
| 1.7738 | 1.0 | 900 | 1.2342 | 35.7436 | 0.5806 | 0.3941 | 0.5442 | 0.5444 | 0.5512 | |
|
|
|
* All values in the chart above are rounded to near ten-thousandth. |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.2 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.5.2 |
|
- Tokenizers 0.12.1 |