|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: vit-base-patch16-224-in21k_brain_tumor_diagnosis |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9215686274509803 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9375 |
|
- name: Recall |
|
type: recall |
|
value: 1 |
|
- name: Precision |
|
type: precision |
|
value: 0.8823529411764706 |
|
language: |
|
- en |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
# vit-base-patch16-224-in21k_brain_tumor_diagnosis |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2591 |
|
- Accuracy: 0.9216 |
|
- F1: 0.9375 |
|
- Recall: 1.0 |
|
- Precision: 0.8824 |
|
|
|
## Model description |
|
|
|
This is a binary classification model to distinguish between if the MRI images detect a brain tumor or not. |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Binary%20Classification/Brain%20Tumor%20MRI%20Images/brain_tumor_MRI_Images_ViT.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection |
|
|
|
_Sample Images From Dataset:_ |
|
|
|
![Sample Images](https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Binary%20Classification/Brain%20Tumor%20MRI%20Images/Images/Sample%20Images.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.7101 | 1.0 | 13 | 0.3351 | 0.9412 | 0.9474 | 0.9 | 1.0 | |
|
| 0.7101 | 2.0 | 26 | 0.3078 | 0.9020 | 0.9231 | 1.0 | 0.8571 | |
|
| 0.7101 | 3.0 | 39 | 0.2591 | 0.9216 | 0.9375 | 1.0 | 0.8824 | |
|
| 0.7101 | 4.0 | 52 | 0.2702 | 0.9020 | 0.9123 | 0.8667 | 0.9630 | |
|
| 0.7101 | 5.0 | 65 | 0.2855 | 0.9020 | 0.9123 | 0.8667 | 0.9630 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.12.1 |