File size: 2,051 Bytes
4b9cc32
 
 
 
 
c21abfd
 
4b9cc32
 
 
c21abfd
 
 
 
 
 
 
4b9cc32
 
 
 
c21abfd
4b9cc32
 
 
c21abfd
4b9cc32
 
 
c21abfd
4b9cc32
 
 
c21abfd
4b9cc32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c21abfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9cc32
 
 
 
 
 
c21abfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: hustvl/yolos-small
tags:
- generated_from_trainer
- medical
- biology
model-index:
- name: yolos-small-Abdomen_MRI
  results: []
datasets:
- Francesco/abdomen-mri
language:
- en
metrics:
- mean_iou
pipeline_tag: object-detection
---

# yolos-small-Abdomen_MRI

This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small).

## Model description

https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Abdomen%20MRIs%20Object%20Detection/Abdomen_MRI_Object_Detection_YOLOS.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://huggingface.co/datasets/Francesco/abdomen-mri

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results


| Metric Name | IoU | Area | maxDets | Value |
|:-----:|:-----:|:-----:|:-----:|:-----:|
| Average Precision (AP) | 0.50:0.95 | all | 100 | 0.453 |
| Average Precision (AP) | 0.50 | all | 100 | 0.928 |
| Average Precision (AP) | 0.75 | all | 100 | 0.319 |
| Average Precision (AP) | 0.50:0.95 | small | 100  | -1.000 |
| Average Precision (AP) | 0.50:0.95 | medium | 100  | 0.426 |
| Average Precision (AP) | 0.50:0.95 | large | 100  | 0.457 |
| Average Recall (AR) | 0.50:0.95 | all | 1 | 0.518 |
| Average Recall (AR) | 0.50:0.95 | all | 10 | 0.645 |
| Average Recall (AR) | 0.50:0.95 | all | 100 | 0.715 |
| Average Recall (AR) | 0.50:0.95 | small | 100 | -1.000 |
| Average Recall (AR) | 0.50:0.95 | medium | 100 | 0.633 |
| Average Recall (AR) | 0.50:0.95 | large | 100 | 0.716 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3