metadata
license: apache-2.0
base_model: hustvl/yolos-small
tags:
- generated_from_trainer
- medical
- biology
- Object Detection
model-index:
- name: yolos-small-Liver_Disease
results: []
datasets:
- Francesco/liver-disease
language:
- en
pipeline_tag: object-detection
yolos-small-Liver_Disease
This model is a fine-tuned version of hustvl/yolos-small.
Model description
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
Training and evaluation data
Dataset Source: https://huggingface.co/datasets/Francesco/liver-disease
Example Image
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Metric Name | IoU | Area | maxDets | Metric Value |
---|---|---|---|---|
Average Precision (AP) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.254 |
Average Precision (AP) | IoU=0.50 | area= all | maxDets=100 | 0.399 |
Average Precision (AP) | IoU=0.75 | area= all | maxDets=100 | 0.291 |
Average Precision (AP) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.000 |
Average Precision (AP) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.154 |
Average Precision (AP) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.283 |
Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 1 | 0.147 |
Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 10 | 0.451 |
Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.552 |
Average Recall (AR) | IoU=0.50:0.95 | area= small | maxDets=100 | 0.000 |
Average Recall (AR) | IoU=0.50:0.95 | area=medium | maxDets=100 | 0.444 |
Average Recall (AR) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.572 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3