vi_whisper-medium

This model is a one shot fine-tuned version of openai/whisper-medium on the Vin100h dataset. It achieves the following results on the evaluation set: - Loss: 0.2894 - Wer: 21.68 on whisper-quantized model by CTranslate2

Model description

To use quantized model , firstly , read the doc of how to use CTranslate2 converter and Faster Whisper repo in here:

Intended uses & limitations

More information needed

Training and evaluation data

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 8000

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu11.8
  • Datasets 2.13.1
  • Tokenizers 0.13.3
  • PEFT 0.5.0.dev0

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32
Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DuyTa/vi-whisper-medium-Lora

Finetuned
(498)
this model

Evaluation results