EAV123's picture
update model card README.md
7fb6c69
|
raw
history blame
2.2 kB
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6674
- Accuracy: 0.85
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3578 | 1.0 | 56 | 0.5212 | 0.87 |
| 0.2151 | 1.99 | 112 | 0.5794 | 0.82 |
| 0.1341 | 2.99 | 168 | 0.5627 | 0.85 |
| 0.2137 | 4.0 | 225 | 0.5409 | 0.84 |
| 0.0266 | 5.0 | 281 | 0.7337 | 0.81 |
| 0.0159 | 5.99 | 337 | 0.8170 | 0.83 |
| 0.0073 | 6.99 | 393 | 0.5477 | 0.89 |
| 0.007 | 7.96 | 448 | 0.6674 | 0.85 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3