40_langdetect_v01 / README.md
ERCDiDip's picture
Update README.md
937de72
|
raw
history blame
5.11 kB
metadata
license: mit
tag: text-classification
widget:
  - text: >-
      Sehent hoerent oder lesent daß div chint, div bechoment von frowen
      Chvnegvnde Heinriches des Losen
  - text: >-
      Mihály zágrábi püspök előtt Vaguth (dict.) László c. a püspöki várnépek
      (castrenses) Csázma comitatus-beli volt földjének egy részét, amelyet
      szolgálataiért predialis jogon tőle kapott, 1 szőlővel együtt (a Zuynar
      föld azon része kivételével, amelyet a püspök László c.-től elvett és a
      megvakított Kokosnak adományozott
  - text: >-
      Rath und Gemeinde der Stadt Wismar beschweren sich über die von den
      Hauptleuten, Beamten und Vasallen des Grafen Johann von Holstein und
      Stormarn ihren Bürgern seit Jahren zugefügten Unbilden, indem sie ein
      Verzeichniss der erlittenen einzelnen Verluste beibringen.
  - text: >-
      Diplomă de înnobilare emisă de împăratul romano-german Rudolf al II-lea de
      Habsburg la în favoarea familiei Szőke de Galgóc. Aussteller: Rudolf al
      II-lea de Habsburg, împărat romano-german Empfänger: Szőke de Galgóc,
      familie
  - text: >-
      бѣ жє болѧ єтєръ лазаръ отъ виѳаньѧ градьца марьина и марѳꙑ сєстрꙑ єѧ | бѣ
      жє марьꙗ помазавъшиꙗ господа мѵромъ и отьръши ноѕѣ єго власꙑ своими єѧжє
      братъ лазаръ болѣашє

XLM-RoBERTa (base) language-detection model (modern and medieval)

This model is a fine-tuned version of xlm-roberta-base on the monasterium.net dataset.

Model description

On the top of this XLM-RoBERTa transformer model is a classification head. Please refer this model together with to the XLM-RoBERTa (base-sized model) card or the paper Unsupervised Cross-lingual Representation Learning at Scale by Conneau et al. for additional information.

Intended uses & limitations

You can directly use this model as a language detector, i.e. for sequence classification tasks. Currently, it supports the following 40 languages, modern and medieval:

Modern: Bulgarian (bg), Croatian (hr), Czech (cs), Danish (da), Dutch (nl), English (en), Estonian (et), Finnish (fi), French (fr), German (de), Greek (el), Hungarian (hu), Irish (ga), Italian (it), Latvian (lv), Lithuanian (lt), Maltese (mt), Polish (pl), Portuguese (pt), Romanian (ro), Slovak (sk), Slovenian (sl), Spanish (es), Swedish (sv), Russian (ru), Turkish (tr), Basque (eu), Catalan (ca), Albanian (sq), Serbian (se), Ukrainian (uk), Norwegian (no), Arabic (ar), Chinese (zh), Hebrew (he)

Medieval: Middle High German (mhd), Latin (la), Middle Low German (gml), Old French (fro), Old Church Slavonic (chu), Early New High German (fnhd)

Training and evaluation data

The model was fine-tuned using the Monasterium and Wikipedia datasets, which consist of text sequences in 40 languages. The training set contains 80k samples, while the validation and test sets contain 16k. The average accuracy on the test set is 99.59% (this matches the average macro/weighted F1-score, the test set being perfectly balanced).

Training procedure

Fine-tuning was done via the Trainer API with WeightedLossTrainer.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

mixed_precision_training: Native AMP

Training results

Training Loss Training Loss F1
0.000300 0.048985 0.991585
0.000100 0.033340 0.994663
0.000000 0.032938 0.995979

Using example

#Install packages
!pip install transformers --quiet

#Import libraries
import torch
from transformers import pipeline

#Define pipeline
classificator = pipeline("text-classification", model="ERCDiDip/40_langdetect_v01")

#Use pipeline
classificator("clemens etc dilecto filio scolastico ecclesie wetflari ensi treveren dioc salutem etc significarunt nobis dilecti filii commendator et fratres hospitalis beate marie theotonicorum")

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0
  • Datasets 2.6.1
  • Tokenizers 0.13.3

Citation

Please cite the following papers when using this model.

@misc{ercdidip2022,
  title={40 langdetect v01 (Revision 9fab42a)},
  author={Kovács, Tamás, Atzenhofer-Baumgartner, Florian, Aoun, Sandy, Nicolaou, Anguelos, Luger, Daniel, Decker, Franziska, Lamminger, Florian and Vogeler, Georg},
  year         = { 2022 },
  url          = { https://huggingface.co/ERCDiDip/40_langdetect_v01 },
  doi          = { 10.57967/hf/0099 },
  publisher    = { Hugging Face }
}

This model is part of the From Digital to Distant Diplomatics (DiDip) ERC project funded by the European Research Council.