kapuska/t5-small-finetuned-on-800-records-samsum
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.7883
- Validation Loss: 2.3752
- Train Rouge1: 24.8093
- Train Rouge2: 8.8889
- Train Rougel: 22.6817
- Train Rougelsum: 22.6817
- Train Gen Len: 19.0
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
---|---|---|---|---|---|---|---|
1.9252 | 1.9205 | 19.5556 | 2.3256 | 15.1111 | 15.1111 | 19.0 | 0 |
1.9005 | 1.9227 | 17.5579 | 2.3810 | 15.2852 | 15.2852 | 19.0 | 1 |
1.8769 | 1.9228 | 17.5579 | 2.3810 | 15.2852 | 15.2852 | 19.0 | 2 |
1.8463 | 1.9192 | 17.5579 | 2.3810 | 15.2852 | 15.2852 | 19.0 | 3 |
1.8251 | 1.9132 | 17.4786 | 2.3256 | 13.0342 | 13.0342 | 19.0 | 4 |
1.8148 | 1.9147 | 15.5594 | 2.3810 | 13.2867 | 13.2867 | 19.0 | 5 |
1.7980 | 1.9142 | 15.5594 | 2.3810 | 13.2867 | 13.2867 | 19.0 | 6 |
1.7684 | 1.9158 | 15.6772 | 2.3810 | 13.4045 | 13.4045 | 19.0 | 7 |
1.7571 | 1.9161 | 17.5964 | 2.3256 | 13.1519 | 13.1519 | 19.0 | 8 |
1.7345 | 1.9221 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 9 |
1.7136 | 1.9141 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 10 |
1.6935 | 1.9249 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 11 |
1.6685 | 1.9226 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 12 |
1.6571 | 1.9258 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 13 |
1.6327 | 1.9308 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 14 |
1.6295 | 1.9271 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 15 |
1.6112 | 1.9314 | 19.5556 | 2.3256 | 15.1111 | 15.1111 | 19.0 | 16 |
1.6008 | 1.9357 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 17 |
1.5826 | 1.9277 | 19.3913 | 2.2727 | 15.0435 | 15.0435 | 19.0 | 18 |
1.5784 | 1.9342 | 21.3913 | 2.2727 | 17.0435 | 17.0435 | 19.0 | 19 |
1.5553 | 1.9364 | 19.3913 | 2.2727 | 15.0435 | 15.0435 | 19.0 | 20 |
1.5292 | 1.9461 | 19.3913 | 2.2727 | 15.0435 | 15.0435 | 19.0 | 21 |
1.5114 | 1.9505 | 19.3913 | 2.2727 | 15.0435 | 15.0435 | 19.0 | 22 |
1.5042 | 1.9540 | 17.5964 | 2.3256 | 13.1519 | 13.1519 | 19.0 | 23 |
1.4964 | 1.9494 | 19.0621 | 4.4444 | 16.9344 | 16.9344 | 19.0 | 24 |
1.4736 | 1.9569 | 24.7136 | 4.4444 | 20.6628 | 22.5859 | 19.0 | 25 |
1.4644 | 1.9618 | 24.7136 | 4.4444 | 20.6628 | 22.5859 | 19.0 | 26 |
1.4562 | 1.9693 | 18.9821 | 4.4444 | 16.8544 | 16.8544 | 19.0 | 27 |
1.4339 | 1.9597 | 22.7905 | 4.4444 | 18.7398 | 20.6628 | 19.0 | 28 |
1.4204 | 1.9702 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 29 |
1.4182 | 1.9715 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 30 |
1.4014 | 1.9768 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 31 |
1.3845 | 1.9847 | 20.9428 | 4.4444 | 18.8152 | 18.8152 | 19.0 | 32 |
1.3756 | 1.9790 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 33 |
1.3611 | 1.9936 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 34 |
1.3495 | 1.9900 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 35 |
1.3403 | 1.9998 | 20.9428 | 4.4444 | 18.8152 | 18.8152 | 19.0 | 36 |
1.3253 | 2.0060 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 37 |
1.3109 | 2.0088 | 18.9821 | 4.4444 | 16.8544 | 16.8544 | 19.0 | 38 |
1.3106 | 2.0121 | 20.8674 | 4.4444 | 18.7398 | 18.7398 | 19.0 | 39 |
1.2903 | 2.0142 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 40 |
1.2795 | 2.0239 | 20.8674 | 4.4444 | 18.7398 | 18.7398 | 19.0 | 41 |
1.2788 | 2.0322 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 42 |
1.2629 | 2.0284 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 43 |
1.2525 | 2.0423 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 44 |
1.2373 | 2.0424 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 45 |
1.2242 | 2.0454 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 46 |
1.2214 | 2.0541 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 47 |
1.2066 | 2.0567 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 48 |
1.1866 | 2.0632 | 26.9370 | 11.1111 | 24.8093 | 24.8093 | 19.0 | 49 |
1.1976 | 2.0684 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 50 |
1.1806 | 2.0725 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 51 |
1.1662 | 2.0803 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 52 |
1.1626 | 2.0840 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 53 |
1.1464 | 2.0855 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 54 |
1.1298 | 2.0956 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 55 |
1.1300 | 2.1050 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 56 |
1.1255 | 2.1025 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 57 |
1.1005 | 2.1188 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 58 |
1.1002 | 2.1261 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 59 |
1.0806 | 2.1318 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 60 |
1.0869 | 2.1425 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 61 |
1.0768 | 2.1492 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 62 |
1.0681 | 2.1473 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 63 |
1.0594 | 2.1440 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 64 |
1.0411 | 2.1461 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 65 |
1.0342 | 2.1727 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 66 |
1.0306 | 2.1677 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 67 |
1.0163 | 2.1753 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 68 |
1.0139 | 2.1767 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 69 |
1.0036 | 2.1929 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 70 |
1.0049 | 2.1902 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 71 |
0.9947 | 2.1936 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 72 |
0.9803 | 2.2084 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 73 |
0.9791 | 2.2106 | 19.3144 | 4.5455 | 17.1405 | 17.1405 | 19.0 | 74 |
0.9655 | 2.2172 | 20.8674 | 4.4444 | 18.7398 | 18.7398 | 19.0 | 75 |
0.9640 | 2.2215 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 76 |
0.9456 | 2.2341 | 26.9370 | 11.1111 | 24.8093 | 24.8093 | 19.0 | 77 |
0.9396 | 2.2414 | 23.0705 | 8.8889 | 20.9428 | 20.9428 | 19.0 | 78 |
0.9335 | 2.2455 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 79 |
0.9261 | 2.2560 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 80 |
0.9075 | 2.2642 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 81 |
0.9023 | 2.2763 | 22.9951 | 8.8889 | 20.8674 | 20.8674 | 19.0 | 82 |
0.9044 | 2.2782 | 21.0720 | 8.8889 | 18.9444 | 18.9444 | 19.0 | 83 |
0.8961 | 2.2812 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 84 |
0.8813 | 2.2794 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 85 |
0.8731 | 2.2886 | 21.0720 | 8.8889 | 18.9444 | 18.9444 | 19.0 | 86 |
0.8751 | 2.2930 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 87 |
0.8652 | 2.3024 | 25.2256 | 6.8182 | 23.0517 | 23.0517 | 19.0 | 88 |
0.8605 | 2.3131 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 89 |
0.8571 | 2.3070 | 22.9951 | 8.8889 | 20.8674 | 20.8674 | 19.0 | 90 |
0.8473 | 2.3123 | 25.1227 | 11.1111 | 22.9951 | 22.9951 | 19.0 | 91 |
0.8456 | 2.3272 | 25.1227 | 11.1111 | 22.9951 | 22.9951 | 19.0 | 92 |
0.8329 | 2.3427 | 26.9370 | 11.1111 | 24.8093 | 24.8093 | 19.0 | 93 |
0.8294 | 2.3419 | 25.1982 | 11.1111 | 23.0705 | 23.0705 | 19.0 | 94 |
0.8243 | 2.3507 | 25.1982 | 11.1111 | 23.0705 | 23.0705 | 19.0 | 95 |
0.8132 | 2.3600 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 96 |
0.8153 | 2.3501 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 97 |
0.8005 | 2.3579 | 20.8778 | 2.2727 | 18.7039 | 18.7039 | 19.0 | 98 |
0.7883 | 2.3752 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 99 |
Framework versions
- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.