exl2 quant (measurement.json in main branch)


check revisions for quants


Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: MangoHQ/Gryphe-3.5-16k-Subset
    type: sharegpt
    conversation: chatml
  - path: Epiculous/Synthstruct-Gens-v1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/Stheno-Data-Filtered
    type: sharegpt
    conversation: chatml
  - path: Epiculous/SynthRP-Gens-v1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: lodrick-the-lafted/NopmWritingStruct
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: sharegpt
    conversation: chatml

chat_template: chatml

val_set_size: 0.01
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 16384
# sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: tinymagnumv2
wandb_entity:
wandb_watch:
wandb_name: tinymagnumv2
wandb_log_model:

gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00002
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1

debug:
deepspeed:
fsdp:
fsdp_config:

special_tokens:
  pad_token: <|finetune_right_pad_id|>

outputs/out

This model is a fine-tuned version of IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 36
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.6733 0.0051 1 1.6590
1.4425 0.2523 49 1.3040
1.3564 0.5047 98 1.2451
1.333 0.7570 147 1.2201
1.2936 1.0093 196 1.2077
1.2235 1.2462 245 1.2041
1.2651 1.4986 294 1.2018
1.238 1.7509 343 1.2014

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Edens-Gate/TinyMagnum-r2-exl2