metadata
base_model: NewEden/trashdwag
library_name: peft
license: other
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: tinymagnum-r2-KTO-r1
results: []
tinymagnum-r2-KTO-r1
This model is a fine-tuned version of NewEden/trashdwag on the combined_kto.json dataset. It achieves the following results on the evaluation set:
- Loss: 0.5003
- Rewards/chosen: 0.0061
- Logps/chosen: -12.0862
- Rewards/rejected: 0.0023
- Logps/rejected: -16.1405
- Rewards/margins: 0.0039
- Kl: 0.0447
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Logps/chosen | Rewards/rejected | Logps/rejected | Rewards/margins | Kl |
---|---|---|---|---|---|---|---|---|---|
0.5025 | 0.1078 | 16 | 0.5038 | 0.0004 | -12.1438 | 0.0007 | -16.1563 | -0.0003 | 0.0099 |
0.502 | 0.2157 | 32 | 0.5019 | 0.0033 | -12.1150 | 0.0018 | -16.1450 | 0.0014 | 0.0200 |
0.5026 | 0.3235 | 48 | 0.5013 | 0.0051 | -12.0964 | 0.0027 | -16.1358 | 0.0024 | 0.0335 |
0.5021 | 0.4313 | 64 | 0.5015 | 0.0058 | -12.0893 | 0.0036 | -16.1270 | 0.0022 | 0.0406 |
0.5017 | 0.5392 | 80 | 0.5012 | 0.0064 | -12.0833 | 0.0037 | -16.1265 | 0.0027 | 0.0434 |
0.5003 | 0.6470 | 96 | 0.5007 | 0.0066 | -12.0812 | 0.0032 | -16.1311 | 0.0034 | 0.0431 |
0.4996 | 0.7548 | 112 | 0.5012 | 0.0063 | -12.0846 | 0.0028 | -16.1353 | 0.0035 | 0.0437 |
0.5077 | 0.8627 | 128 | 0.5005 | 0.0063 | -12.0844 | 0.0026 | -16.1374 | 0.0037 | 0.0433 |
0.5012 | 0.9705 | 144 | 0.5004 | 0.0064 | -12.0837 | 0.0023 | -16.1401 | 0.0041 | 0.0431 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.20.0
- Tokenizers 0.19.1