|
import copy |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import os.path |
|
import os.path as osp |
|
import shutil |
|
import warnings |
|
from abc import ABC |
|
from collections import OrderedDict, defaultdict, deque |
|
from copy import deepcopy |
|
from itertools import chain |
|
from threading import Thread |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
from einops import rearrange |
|
from PIL import Image |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
LogitsProcessor, |
|
PretrainedConfig, |
|
PreTrainedModel, |
|
Qwen2Config, |
|
Qwen2ForCausalLM, |
|
Qwen2PreTrainedModel, |
|
TextIteratorStreamer, |
|
) |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.modeling_utils import ContextManagers, no_init_weights |
|
|
|
from .base_projector import MultimodalProjector, MultimodalProjectorConfig |
|
from .builder import build_llm_and_tokenizer |
|
from .configuration_vila import VILAConfig |
|
from .constants import * |
|
from .conversation import SeparatorStyle, default_conversation |
|
from .media import extract_media |
|
from .media_encoder import BasicImageEncoder, BasicVideoEncoder |
|
from .mm_utils import process_image, process_images |
|
from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2 |
|
from .tokenizer_utils import tokenize_conversation |
|
from .utils import get_model_config |
|
|
|
|
|
|
|
|
|
def get_pg_manager(): |
|
return None |
|
|
|
|
|
def get_model_weights_dtype(model: nn.Module): |
|
pass |
|
|
|
|
|
def build_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel: |
|
if model_type_or_path is None: |
|
return None |
|
|
|
if config.resume_path: |
|
assert os.path.exists(model_type_or_path), f"Resume mm projector path {model_type_or_path} does not exist!" |
|
return MultimodalProjector.from_pretrained(model_type_or_path, config) |
|
|
|
else: |
|
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path) |
|
mm_projector = MultimodalProjector(mm_projector_cfg, config) |
|
return mm_projector |
|
|
|
|
|
def check_dot_in_model_path(model_path: str): |
|
"""Check if the model path contains dot, which will affect the remote code loading.""" |
|
if osp.isdir(model_path): |
|
if "." in osp.abspath(model_path): |
|
return True |
|
else: |
|
if "." in model_path: |
|
return True |
|
return False |
|
|
|
|
|
def get_vila_version(model_path: str) -> str: |
|
VERSIONS = ["vila1.5", "vila-u", "longvila", "nvila", "vila-m3"] |
|
for version in VERSIONS: |
|
if version in model_path.lower(): |
|
return version |
|
return None |
|
|
|
|
|
def generate_jinja_template(conv_mode: str) -> str: |
|
if conv_mode == "vicuna_v1": |
|
return """{% set system_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." %} |
|
{% set roles = ["USER", "ASSISTANT"] %} |
|
{% set sep = " " %} |
|
{% set sep2 = "</s>" %} |
|
|
|
{{ system_prompt }} |
|
|
|
{% for message in messages %} |
|
{% if message['role'] == roles[0] %} |
|
{{ roles[0] }}{{ sep }}{{ message['content'] }}{{ sep2 }} |
|
{% else %} |
|
{{ roles[1] }}{{ sep }}{{ message['content'] }}{{ sep2 }} |
|
{% endif %} |
|
{% endfor %}""" |
|
elif conv_mode == "llama_3": |
|
return """{% set system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." %} |
|
{% set roles = ["<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"] %} |
|
{% set sep = "<|eot_id|>" %} |
|
{% set sep2 = "<|end_of_text|>" %} |
|
|
|
{{ system_prompt }} |
|
|
|
{% for message in messages %} |
|
{% if message['role'] == 'user' %} |
|
{{ roles[0] }}{{ message['content'] }}{{ sep }} |
|
{% else %} |
|
{{ roles[1] }}{{ message['content'] }}{{ sep }} |
|
{% endif %} |
|
{% endfor %} |
|
|
|
{{ sep2 }}""" |
|
elif conv_mode == "hermes_2": |
|
return """{% set system_prompt = "<|im_start|>system\nAnswer the questions." %} |
|
{% set roles = ["<|im_start|>user\n", "<|im_start|>assistant\n"] %} |
|
{% set sep = "<|im_end|>" %} |
|
|
|
{{ system_prompt }}{{ sep }} |
|
|
|
{% for message in messages %} |
|
{% if message['role'] == 'user' %} |
|
{{ roles[0] }}{{ message['content'] }}{{ sep }} |
|
{% else %} |
|
{{ roles[1] }}{{ message['content'] }}{{ sep }} |
|
{% endif %} |
|
{% endfor %}""" |
|
else: |
|
raise NotImplementedError(f"Jinja template generation is not implemented for {conv_mode}.") |
|
|
|
|
|
def build_vision_tower(model_name_or_path: str, config: PretrainedConfig) -> PreTrainedModel: |
|
|
|
if model_name_or_path is None: |
|
return None |
|
|
|
vision_tower_arch = None |
|
if config.resume_path and "radio" not in model_name_or_path: |
|
assert os.path.exists(model_name_or_path), f"Resume vision tower path {model_name_or_path} does not exist!" |
|
vision_tower_cfg = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
vision_tower_arch = vision_tower_cfg.architectures[0].lower() |
|
vision_tower_name = vision_tower_arch if vision_tower_arch is not None else model_name_or_path |
|
|
|
use_s2 = getattr(config, "s2", False) |
|
use_dynamic_s2 = getattr(config, "dynamic_s2", False) |
|
|
|
if "siglip" in vision_tower_name: |
|
if use_dynamic_s2: |
|
vision_tower = SiglipVisionTowerDynamicS2(model_name_or_path, config) |
|
elif use_s2: |
|
vision_tower = SiglipVisionTowerS2(model_name_or_path, config) |
|
else: |
|
vision_tower = SiglipVisionTower(model_name_or_path, config) |
|
else: |
|
raise NotImplementedError(f"Unknown vision tower: {model_name_or_path}") |
|
|
|
config.mm_hidden_size = ( |
|
vision_tower.config.hidden_size if not (use_s2 or use_dynamic_s2) else vision_tower.hidden_size |
|
) |
|
return vision_tower |
|
|
|
|
|
class VILAPretrainedModel(PreTrainedModel): |
|
config_class = VILAConfig |
|
main_input_name = "input_embeds" |
|
supports_gradient_checkpointing = True |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config: VILAConfig, *args, **kwargs): |
|
super().__init__(config) |
|
self.config = config |
|
cfgs = get_model_config(config) |
|
if len(cfgs) == 3: |
|
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs |
|
else: |
|
raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.") |
|
|
|
|
|
device_map = kwargs.get("device_map", "cpu") |
|
self.mm_projector = build_mm_projector(mm_projector_cfg, config) |
|
self.vision_tower = build_vision_tower(vision_tower_cfg, config) |
|
if "auto" in device_map or "cuda" in device_map: |
|
self.mm_projector = self.mm_projector.cuda() |
|
self.vision_tower = self.vision_tower.cuda() |
|
|
|
self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map) |
|
|
|
self.encoders = {"image": BasicImageEncoder(self), "video": BasicVideoEncoder(self)} |
|
|
|
self.post_config() |
|
self.is_loaded = True |
|
|
|
assert ( |
|
self.llm is not None or self.vision_tower is not None or self.mm_projector is not None |
|
), "At least one of the components must be instantiated." |
|
|
|
@classmethod |
|
def convert_vila_dev_ckpt_to_remote( |
|
self, |
|
model_path: str, |
|
output_dir: str = None, |
|
vila_version: str | None = None, |
|
conv_mode: str | None = None, |
|
*model_args, |
|
**kwargs, |
|
): |
|
|
|
from huggingface_hub import HfApi, snapshot_download |
|
|
|
if os.path.isdir(model_path): |
|
model_path = model_path |
|
api = HfApi() |
|
|
|
if check_dot_in_model_path(model_path) and output_dir is None: |
|
raise ValueError( |
|
f"Model path {model_path} contains a dot, which will affect the remote code loading. Please specify the output directory without dot in the path to fix this issue." |
|
) |
|
if output_dir is not None and "." in output_dir: |
|
raise ValueError( |
|
f"Output directory {output_dir} contains a dot, which will affect the remote code loading. Please specify a valid output directory without dots." |
|
) |
|
if vila_version is None: |
|
vila_version = get_vila_version(model_path) |
|
|
|
if api.repo_exists(model_path): |
|
model_path = snapshot_download(model_path, local_dir=output_dir) |
|
print("downloading HF model to", model_path) |
|
|
|
cfg_path = os.path.join(model_path, "config.json") |
|
config = json.load(open(cfg_path)) |
|
config["version"] = "2.0" |
|
config["architectures"] = ["VILAForCasualLM"] |
|
config["auto_map"] = { |
|
"AutoConfig": "modeling_vila.VILAConfig", |
|
"AutoModel": "modeling_vila.VILAForCasualLM", |
|
"AutoModelForCausalLM": "modeling_vila.VILAForCasualLM", |
|
} |
|
config["model_type"] = "vila" |
|
if vila_version in ["vila1.5", "vila-m3"]: |
|
if conv_mode is None: |
|
raise ValueError(f"Please specify the conversation mode for {model_path}.") |
|
config["chat_template"] = conv_mode |
|
jinja_template = generate_jinja_template(conv_mode) |
|
jinja_path = os.path.join(model_path, f"{conv_mode}.jinja") |
|
with open(jinja_path, "w") as f: |
|
f.write(jinja_template) |
|
json.dump(config, open(cfg_path, "w"), indent=2) |
|
self.copy_remote_py_files(model_path) |
|
|
|
@classmethod |
|
def copy_remote_py_files(cls, output_dir): |
|
|
|
current_file_path = os.path.abspath(__file__) |
|
current_folder = os.path.dirname(current_file_path) |
|
for file_name in os.listdir(current_folder): |
|
if file_name.endswith(".py") or file_name.endswith(".jinja"): |
|
full_file_name = os.path.join(current_folder, file_name) |
|
if os.path.isfile(full_file_name): |
|
shutil.copy(full_file_name, output_dir) |
|
print("[HF remote code] copying", full_file_name, "to", output_dir) |
|
|
|
def save_pretrained(self, output_dir, state_dict=None): |
|
if state_dict is None: |
|
|
|
|
|
state_dict = self.state_dict() |
|
|
|
if getattr(self, "tokenizer", None): |
|
self.tokenizer.save_pretrained(osp.join(output_dir, "llm")) |
|
|
|
if self.get_llm(): |
|
print(f"saving llm to {osp.join(output_dir, 'llm')}") |
|
self.llm.config._name_or_path = osp.join(output_dir, "llm") |
|
llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k}) |
|
self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict) |
|
self.config.llm_cfg = self.llm.config |
|
|
|
if self.get_vision_tower(): |
|
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}") |
|
self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower") |
|
vision_tower_state_dict = OrderedDict( |
|
{k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k} |
|
) |
|
self.vision_tower.vision_tower.save_pretrained( |
|
os.path.join(output_dir, "vision_tower"), |
|
state_dict=vision_tower_state_dict, |
|
) |
|
self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower")) |
|
self.config.vision_tower_cfg = self.vision_tower.config |
|
if hasattr(self.config.vision_tower_cfg, "auto_map"): |
|
if "radio" not in self.get_vision_tower().__class__.__name__.lower(): |
|
delattr(self.config.vision_tower_cfg, "auto_map") |
|
|
|
if self.get_mm_projector(): |
|
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}") |
|
self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector") |
|
mm_projector_state_dict = OrderedDict( |
|
{k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k} |
|
) |
|
self.mm_projector.save_pretrained( |
|
os.path.join(output_dir, "mm_projector"), |
|
state_dict=mm_projector_state_dict, |
|
) |
|
self.config.mm_projector_cfg = self.mm_projector.config |
|
|
|
|
|
self.config._name_or_path = output_dir |
|
self.config.architectures = [self.__class__.__name__] |
|
self.config.save_pretrained(output_dir) |
|
|
|
|
|
self.copy_remote_py_files(output_dir) |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[str] = None, |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
use_safetensors: Optional[bool] = None, |
|
weights_only: bool = True, |
|
**kwargs, |
|
): |
|
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True) |
|
return cls._from_config(config, **kwargs) |
|
|
|
def init_llm(self, llm_config, config, *args, **kwargs): |
|
self.llm, self.tokenizer = build_llm_and_tokenizer(llm_config, config, *args, **kwargs) |
|
|
|
|
|
|
|
NUM_EXTRA_TOKENS = len(self.tokenizer.added_tokens_encoder.keys()) |
|
|
|
|
|
self.vocab_size = self.tokenizer.vocab_size + NUM_EXTRA_TOKENS |
|
|
|
|
|
self.grammar_compiler = None |
|
|
|
self.llm.resize_token_embeddings(len(self.tokenizer)) |
|
return self.llm, self.tokenizer |
|
|
|
def post_config(self): |
|
|
|
|
|
self.llm = self.llm.to(torch.float16) |
|
self.mm_projector = self.mm_projector.to(torch.float16) |
|
self.vision_tower = self.vision_tower.to(torch.float16) |
|
|
|
self.training = self.llm.training |
|
|
|
if getattr(self.config, "llm_cfg", None) is None: |
|
self.config.llm_cfg = self.llm.config |
|
if getattr(self.config, "vision_tower_cfg", None) is None: |
|
self.config.vision_tower_cfg = self.vision_tower.config |
|
if getattr(self.config, "mm_projector_cfg", None) is None: |
|
self.config.mm_projector_cfg = self.mm_projector.config |
|
|
|
def get_llm(self): |
|
llm = getattr(self, "llm", None) |
|
if type(llm) is list: |
|
llm = llm[0] |
|
return llm |
|
|
|
def get_lm_head(self): |
|
lm_head = getattr(self.get_llm(), "lm_head", None) |
|
return lm_head |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, "vision_tower", None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def get_mm_projector(self): |
|
mm_projector = getattr(self, "mm_projector", None) |
|
if type(mm_projector) is list: |
|
mm_projector = mm_projector[0] |
|
return mm_projector |
|
|
|
def freezed_module_patch(self): |
|
""" |
|
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules. |
|
""" |
|
if self.training: |
|
if self.get_llm() and not getattr(self.config, "tune_language_model", False): |
|
pass |
|
|
|
if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False): |
|
self.get_vision_tower().eval() |
|
if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False): |
|
self.get_mm_projector().eval() |
|
|
|
|
|
class VILAForCasualLM(VILAPretrainedModel): |
|
def __init__(self, config: VILAConfig, *args, **kwargs): |
|
super().__init__(config, *args, **kwargs) |
|
|
|
def merge_features_for_dynamic_s2(self, image_features, block_sizes): |
|
scales = self.get_vision_tower().scales |
|
resize_output_to_scale_idx = self.get_vision_tower().resize_output_to_scale_idx |
|
|
|
image_features_each_image = [] |
|
new_block_sizes = [] |
|
block_cnt = 0 |
|
for block_size_each_image in block_sizes: |
|
if block_size_each_image is None: |
|
cur_features = image_features[block_cnt : block_cnt + 1] |
|
cur_features = rearrange(cur_features, "1 (h w) c -> 1 c h w", h=int(cur_features.shape[1] ** 0.5)) |
|
cur_features = cur_features.repeat(1, len(scales), 1, 1) |
|
image_features_each_image.append(cur_features) |
|
new_block_sizes.append((1, 1)) |
|
block_cnt += 1 |
|
else: |
|
cur_features_each_scale = [] |
|
for scale in scales[:-1]: |
|
num_blocks_this_scale = (scale // scales[0]) ** 2 |
|
cur_features_each_scale.append( |
|
self.merge_chessboard( |
|
image_features[block_cnt : block_cnt + num_blocks_this_scale], |
|
num_split_h=scale // scales[0], |
|
num_split_w=scale // scales[0], |
|
) |
|
) |
|
block_cnt += num_blocks_this_scale |
|
num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1] |
|
cur_features_each_scale.append( |
|
self.merge_chessboard( |
|
image_features[block_cnt : block_cnt + num_blocks_last_scale], |
|
num_split_h=block_size_each_image[0], |
|
num_split_w=block_size_each_image[1], |
|
) |
|
) |
|
block_cnt += num_blocks_last_scale |
|
|
|
|
|
output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:] |
|
cur_features = torch.cat( |
|
[ |
|
F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to( |
|
cur_features_each_scale[i].dtype |
|
) |
|
for i in range(len(cur_features_each_scale)) |
|
], |
|
dim=1, |
|
) |
|
|
|
|
|
image_features_each_image.append(cur_features) |
|
|
|
if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1: |
|
new_block_sizes.append(block_size_each_image) |
|
else: |
|
new_block_sizes.append( |
|
( |
|
scales[resize_output_to_scale_idx] // scales[0], |
|
scales[resize_output_to_scale_idx] // scales[0], |
|
) |
|
) |
|
|
|
assert block_cnt == len(image_features) |
|
|
|
return image_features_each_image, new_block_sizes |
|
|
|
def encode_images(self, images, block_sizes: Optional[Optional[Tuple[int, ...]]] = None): |
|
if block_sizes is None: |
|
block_sizes = [None] * len(images) |
|
if getattr(self.config, "dynamic_s2", False): |
|
image_features = self.get_vision_tower()(images) |
|
image_features, new_block_sizes = self.merge_features_for_dynamic_s2(image_features, block_sizes) |
|
|
|
image_features = [ |
|
self.split_chessboard(x, block_size[0], block_size[1]) |
|
for x, block_size in zip(image_features, new_block_sizes) |
|
] |
|
image_features = torch.cat( |
|
[rearrange(x, "b c h w -> b (h w) c") for x in image_features], dim=0 |
|
) |
|
image_features = self.get_mm_projector()(image_features) |
|
image_features = list( |
|
image_features.split([block_size[0] * block_size[1] for block_size in new_block_sizes], dim=0) |
|
) |
|
image_features = [ |
|
self.merge_chessboard(x, block_size[0], block_size[1]) |
|
for x, block_size in zip(image_features, new_block_sizes) |
|
] |
|
image_features = [rearrange(x, "1 c h w -> (h w) c") for x in image_features] |
|
if all([feature.shape[0] == image_features[0].shape[0] for feature in image_features]): |
|
image_features = torch.stack(image_features, dim=0) |
|
else: |
|
image_features = self.get_vision_tower()(images) |
|
image_features = self.get_mm_projector()(image_features) |
|
return image_features |
|
|
|
def _embed( |
|
self, |
|
input_ids: torch.Tensor, |
|
media: Dict[str, List[torch.Tensor]], |
|
media_config: Dict[str, Dict[str, Any]], |
|
labels: Optional[torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX) |
|
attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool) |
|
|
|
|
|
PROCESS_GROUP_MANAGER = None |
|
if PROCESS_GROUP_MANAGER is not None: |
|
for name in media: |
|
self.encoders[name].end_tokens = None |
|
|
|
|
|
text_embeds = self.llm.model.embed_tokens(input_ids) |
|
media_embeds = self.__embed_media_tokens(media, media_config) |
|
|
|
|
|
while media_embeds.get("dummy"): |
|
dummy_embed = media_embeds["dummy"].popleft() |
|
text_embeds += torch.sum(dummy_embed) * 0 |
|
|
|
|
|
batch_size = labels.shape[0] |
|
text_embeds = [text_embeds[k][attention_mask[k]] for k in range(batch_size)] |
|
labels = [labels[k][attention_mask[k]] for k in range(batch_size)] |
|
|
|
|
|
media_tokens = {} |
|
for name, token_id in self.tokenizer.media_token_ids.items(): |
|
media_tokens[token_id] = name |
|
|
|
|
|
inputs_m, labels_m = [], [] |
|
for k in range(batch_size): |
|
inputs_mk, labels_mk = [], [] |
|
pos = 0 |
|
while pos < len(labels[k]): |
|
if input_ids[k][pos].item() in media_tokens: |
|
end = pos + 1 |
|
name = media_tokens[input_ids[k][pos].item()] |
|
input = media_embeds[name].popleft() |
|
label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype) |
|
else: |
|
end = pos |
|
while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens: |
|
end += 1 |
|
input = text_embeds[k][pos:end] |
|
label = labels[k][pos:end] |
|
inputs_mk.append(input) |
|
labels_mk.append(label) |
|
pos = end |
|
inputs_m.append(torch.cat(inputs_mk, dim=0)) |
|
labels_m.append(torch.cat(labels_mk, dim=0)) |
|
inputs, labels = inputs_m, labels_m |
|
|
|
|
|
for name in media_embeds: |
|
if media_embeds[name]: |
|
raise ValueError(f"Not all {name} embeddings are consumed!") |
|
|
|
|
|
inputs, labels = self.__truncate_sequence(inputs, labels) |
|
|
|
|
|
return self.__batchify_sequence(inputs, labels) |
|
|
|
def __embed_media_tokens( |
|
self, |
|
media: Dict[str, List[torch.Tensor]], |
|
media_config: Dict[str, Dict[str, Any]], |
|
) -> Dict[str, List[torch.Tensor]]: |
|
embeds = defaultdict(deque) |
|
for name in media: |
|
if self.training: |
|
|
|
info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])] |
|
infos = list(chain(*distributed.all_gather(info))) |
|
|
|
|
|
if not infos: |
|
continue |
|
|
|
|
|
if media.get(name) is None or len(media[name]) == 0: |
|
dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device) |
|
embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name])) |
|
continue |
|
embeds[name] = deque(self.encoders[name](media[name], media_config[name])) |
|
return embeds |
|
|
|
def __truncate_sequence( |
|
self, inputs: List[torch.Tensor], labels: List[torch.Tensor] |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs): |
|
warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).") |
|
inputs = [input[: self.tokenizer.model_max_length] for input in inputs] |
|
labels = [label[: self.tokenizer.model_max_length] for label in labels] |
|
return inputs, labels |
|
|
|
def __batchify_sequence( |
|
self, inputs: List[torch.Tensor], labels: List[torch.Tensor] |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
batch_size = len(inputs) |
|
device = inputs[0].device |
|
hidden_size = inputs[0].shape[1] |
|
max_length = max(inputs[k].shape[0] for k in range(batch_size)) |
|
attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device) |
|
|
|
inputs_p, labels_p = [], [] |
|
for k in range(batch_size): |
|
size_pk = max_length - inputs[k].shape[0] |
|
inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device) |
|
labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device) |
|
if self.tokenizer.padding_side == "right": |
|
attention_mask[k, inputs[k].shape[0] :] = False |
|
inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0) |
|
labels_pk = torch.cat([labels[k], labels_pk], dim=0) |
|
else: |
|
attention_mask[k, : -inputs[k].shape[0]] = False |
|
inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0) |
|
labels_pk = torch.cat([labels_pk, labels[k]], dim=0) |
|
inputs_p.append(inputs_pk) |
|
labels_p.append(labels_pk) |
|
|
|
inputs = torch.stack(inputs_p, dim=0) |
|
labels = torch.stack(labels_p, dim=0) |
|
return inputs, labels, attention_mask |
|
|
|
def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels): |
|
|
|
PROCESS_GROUP_MANAGER = get_pg_manager() |
|
|
|
|
|
if PROCESS_GROUP_MANAGER is not None: |
|
sp_degree = PROCESS_GROUP_MANAGER.sp_degree |
|
sp_rank = PROCESS_GROUP_MANAGER.sp_rank |
|
sp_group = PROCESS_GROUP_MANAGER.sp_pg |
|
ring_degree = PROCESS_GROUP_MANAGER.ring_degree |
|
ring_rank = PROCESS_GROUP_MANAGER.ring_rank |
|
ring_type = PROCESS_GROUP_MANAGER.ring_type |
|
ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree |
|
ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank |
|
|
|
bs, shard_seqlen = position_ids.shape |
|
sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)] |
|
dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group) |
|
sp_seq_len_cat = torch.cat(sp_seq_len, dim=0) |
|
|
|
if sp_rank == 0: |
|
original_start_id = 0 |
|
else: |
|
original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item() |
|
original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item() |
|
|
|
|
|
all_inputs_embeds = torch.zeros( |
|
bs, |
|
torch.sum(sp_seq_len_cat), |
|
inputs_embeds.shape[-1], |
|
dtype=inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
).contiguous() |
|
all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds |
|
dist.barrier(group=sp_group) |
|
dist.all_reduce(all_inputs_embeds, group=sp_group) |
|
dist.barrier(group=sp_group) |
|
|
|
attention_mask_list = [ |
|
torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device) |
|
for i in range(sp_degree) |
|
] |
|
position_ids_list = [ |
|
torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device) |
|
for i in range(sp_degree) |
|
] |
|
labels_list = [ |
|
torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree) |
|
] |
|
|
|
dist.all_gather(attention_mask_list, attention_mask, group=sp_group) |
|
dist.all_gather(position_ids_list, position_ids, group=sp_group) |
|
dist.all_gather(labels_list, labels, group=sp_group) |
|
|
|
effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)] |
|
effective_seqlen = torch.stack(effective_seqlen_list, dim=-1) |
|
effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0) |
|
|
|
global_attention_mask_list = [] |
|
global_position_ids_list = [] |
|
global_labels_list = [] |
|
global_inputs_embeds_list = [] |
|
for i in range(bs): |
|
global_attention_mask_batch_list = [] |
|
global_position_ids_batch_list = [] |
|
global_labels_batch_list = [] |
|
global_inputs_embeds_batch_list = [] |
|
for j in range(sp_degree): |
|
eff_len = effective_seqlen_batch_list[i][j] |
|
prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0 |
|
|
|
global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len]) |
|
global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len]) |
|
global_labels_batch_list.append(labels_list[j][i, :eff_len]) |
|
global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :]) |
|
global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0)) |
|
global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0)) |
|
global_labels_list.append(torch.cat(global_labels_batch_list, dim=0)) |
|
global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0)) |
|
|
|
global_attention_mask = torch.nn.utils.rnn.pad_sequence( |
|
global_attention_mask_list, batch_first=True, padding_value=False |
|
) |
|
global_position_ids = torch.nn.utils.rnn.pad_sequence( |
|
global_position_ids_list, batch_first=True, padding_value=-1 |
|
) |
|
global_labels = torch.nn.utils.rnn.pad_sequence( |
|
global_labels_list, batch_first=True, padding_value=IGNORE_INDEX |
|
) |
|
global_inputs_embeds = torch.nn.utils.rnn.pad_sequence( |
|
global_inputs_embeds_list, batch_first=True, padding_value=0 |
|
) |
|
|
|
|
|
if ring_degree > 1: |
|
total_effective_seqlen = torch.sum(effective_seqlen, dim=1) |
|
new_seqlen_per_rank = total_effective_seqlen // sp_degree |
|
assert torch.all( |
|
total_effective_seqlen % sp_degree == 0 |
|
), "total_effective_seqlen must be divisible by sp_degree" |
|
|
|
max_new_seqlen = torch.max(new_seqlen_per_rank).item() |
|
|
|
new_attention_mask = torch.zeros( |
|
(bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device |
|
) |
|
new_position_ids = torch.zeros( |
|
(bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device |
|
) |
|
new_labels = torch.full( |
|
(bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device |
|
) |
|
new_inputs_embeds = torch.zeros( |
|
(bs, max_new_seqlen, global_inputs_embeds.shape[-1]), |
|
dtype=global_inputs_embeds.dtype, |
|
device=global_inputs_embeds.device, |
|
) |
|
|
|
if ring_type == "ring_varlen": |
|
for i in range(bs): |
|
start_idx = new_seqlen_per_rank[i] * sp_rank |
|
end_idx = start_idx + new_seqlen_per_rank[i] |
|
new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx] |
|
new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx] |
|
new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx] |
|
new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[ |
|
i, start_idx:end_idx, : |
|
] |
|
elif ring_type == "zigzag_ring_varlen": |
|
chunk_size = total_effective_seqlen // (2 * sp_degree) |
|
for i in range(bs): |
|
|
|
if sp_degree == ring_degree: |
|
forward_rank_idx = sp_rank |
|
backward_rank_idx = 2 * sp_degree - sp_rank - 1 |
|
else: |
|
ulysses_offset = ulysses_rank * ring_degree * 2 |
|
forward_rank_idx = ring_rank + ulysses_offset |
|
backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset |
|
|
|
|
|
start_idx_fwd = forward_rank_idx * chunk_size[i] |
|
end_idx_fwd = start_idx_fwd + chunk_size[i] |
|
|
|
start_idx_bwd = backward_rank_idx * chunk_size[i] |
|
end_idx_bwd = start_idx_bwd + chunk_size[i] |
|
|
|
|
|
new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd] |
|
new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[ |
|
i, start_idx_bwd:end_idx_bwd |
|
] |
|
|
|
new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd] |
|
new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[ |
|
i, start_idx_bwd:end_idx_bwd |
|
] |
|
|
|
new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd] |
|
new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd] |
|
|
|
new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :] |
|
new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[ |
|
i, start_idx_bwd:end_idx_bwd, : |
|
] |
|
else: |
|
raise ValueError(f"Invalid ring_type: {ring_type}") |
|
else: |
|
global_seq_len = global_attention_mask.shape[-1] |
|
seq_len_sharded = global_seq_len // sp_degree |
|
start_idx_reshard = seq_len_sharded * sp_rank |
|
end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len |
|
|
|
new_attention_mask = torch.narrow( |
|
global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard |
|
) |
|
new_position_ids = torch.narrow( |
|
global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard |
|
) |
|
new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard) |
|
new_inputs_embeds = torch.narrow( |
|
global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard |
|
) |
|
|
|
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels |
|
|
|
device = inputs_embeds.device |
|
batch_size = inputs_embeds.shape[0] |
|
seqlens = [attention_mask[k].sum().item() for k in range(batch_size)] |
|
|
|
|
|
inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)] |
|
attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)] |
|
position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)] |
|
labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)] |
|
|
|
|
|
inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device)) |
|
attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device)) |
|
position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device)) |
|
labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device)) |
|
|
|
|
|
for label in labels_p: |
|
label[0] = IGNORE_INDEX |
|
|
|
|
|
inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0) |
|
attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0) |
|
position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0) |
|
labels_p = torch.cat(labels_p, dim=0).unsqueeze(0) |
|
|
|
if hasattr( |
|
self, "pad_to_multiple_of" |
|
): |
|
assert len(labels_p.shape) == 2 |
|
batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1] |
|
hidden_size = inputs_embeds_p.shape[-1] |
|
|
|
if max_length % self.pad_to_multiple_of != 0: |
|
max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of |
|
difference = max_length - cur_length |
|
|
|
inputs_embeds_p = torch.cat( |
|
( |
|
inputs_embeds_p, |
|
torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p), |
|
), |
|
dim=1, |
|
) |
|
labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1) |
|
attention_mask_p = torch.cat( |
|
( |
|
attention_mask_p, |
|
torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p), |
|
), |
|
dim=1, |
|
) |
|
position_ids_p = torch.cat( |
|
(position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1 |
|
) |
|
|
|
return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p |
|
|
|
def get_xgr_logits_processor(self, response_format) -> List[LogitsProcessor]: |
|
raise NotImplementedError("This method is not implemented for VILA model.") |
|
|
|
import xgrammar as xgr |
|
|
|
logging.info("[XGrammar] Compiling grammar for contrained output") |
|
|
|
if self.grammar_compiler is None: |
|
|
|
self.grammar_compiler = xgr.GrammarCompiler( |
|
xgr.TokenizerInfo.from_huggingface(self.tokenizer, vocab_size=self.vocab_size) |
|
) |
|
|
|
if response_format.type == "json_schema": |
|
compiled_grammar = self.grammar_compiler.compile_json_schema( |
|
response_format.json_schema.schema_, |
|
indent=2, |
|
) |
|
else: |
|
compiled_grammar = self.grammar_compiler.compile_builtin_json_grammar() |
|
|
|
return [xgr.contrib.hf.LogitsProcessor(compiled_grammar)] |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
media: Optional[Dict[str, List[torch.Tensor]]] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
media_config: Optional[List] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
packing: bool = True, |
|
force_packing: bool = False, |
|
seqlens_in_batch: Optional[torch.LongTensor] = None, |
|
dpo_forward: bool = False, |
|
**kwargs, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
self.freezed_module_patch() |
|
|
|
if images is not None: |
|
if media is not None: |
|
raise ValueError("Both 'media' and 'images' are provided. Please provide only one.") |
|
print("The 'images' argument is deprecated. Please use 'media' instead.") |
|
media = {"image": images} |
|
|
|
if media_config is None: |
|
media_config = defaultdict(dict) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask) |
|
|
|
if force_packing or (packing and self.training and not dpo_forward): |
|
if seqlens_in_batch is None: |
|
seqlens_in_batch = torch.sum(attention_mask, dim=1) |
|
set_seqlens_in_batch(seqlens_in_batch) |
|
|
|
(inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data( |
|
inputs_embeds, attention_mask, position_ids, labels |
|
) |
|
|
|
outputs = self.llm( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
labels=labels, |
|
**kwargs, |
|
) |
|
|
|
if self.training and getattr(self.config, "time_token_ids", []): |
|
outputs.loss = soft_cross_entropy( |
|
outputs.logits, |
|
labels, |
|
soft_tokens=self.config.time_token_ids, |
|
std=self.config.soft_ce_std, |
|
) |
|
|
|
if dpo_forward: |
|
return outputs.logits, labels |
|
|
|
return outputs |
|
|
|
@torch.inference_mode() |
|
def generate( |
|
self, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
media: Optional[Dict[str, List[torch.Tensor]]] = None, |
|
media_config: Dict[str, Dict[str, Any]] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
**generation_kwargs, |
|
): |
|
inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask) |
|
return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs) |
|
|
|
@torch.inference_mode() |
|
def generate_content( |
|
self, |
|
prompt: Union[str, List], |
|
generation_config: Optional[GenerationConfig] = None, |
|
response_format=None, |
|
) -> str: |
|
|
|
conversation = [{"from": "human", "value": prompt}] |
|
|
|
|
|
if response_format: |
|
xgr_logits_processor = self.get_xgr_logits_processor(response_format) |
|
else: |
|
xgr_logits_processor = None |
|
|
|
|
|
|
|
|
|
media = extract_media(conversation, self.config) |
|
|
|
|
|
media_config = defaultdict(dict) |
|
for name in media: |
|
if name == "image": |
|
if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]: |
|
self.config.image_processor = self.vision_tower.image_processor |
|
if self.config.image_aspect_ratio == "dynamic": |
|
images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half() |
|
conversation[0]["value"] = conversation[0]["value"].replace( |
|
DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0] |
|
) |
|
else: |
|
if type(self.config.s2_scales) is str: |
|
self.config.s2_scales = list(map(int, self.config.s2_scales.split(","))) |
|
images, block_sizes = process_image( |
|
media["image"][0], self.config, None, enable_dynamic_s2=True |
|
) |
|
images = images.half() |
|
media_config[name]["block_sizes"] = [block_sizes] |
|
else: |
|
images = process_images(media["image"], self.vision_tower.image_processor, self.config).half() |
|
media[name] = [image for image in images] |
|
elif name == "video": |
|
if self.config.image_aspect_ratio == "dynamic" and self.config.video_max_tiles > 1: |
|
media[name] = [ |
|
process_images( |
|
images, |
|
self.vision_tower.image_processor, |
|
self.config, |
|
enable_dynamic_res=True, |
|
max_tiles=self.config.video_max_tiles, |
|
).half() |
|
for images in media[name] |
|
] |
|
elif self.config.image_aspect_ratio == "dynamic_s2" and self.config.video_max_tiles > 1: |
|
self.config.image_processor = self.vision_tower.image_processor |
|
if type(self.config.s2_scales) is str: |
|
self.config.s2_scales = list(map(int, self.config.s2_scales.split(","))) |
|
media[name] = [ |
|
torch.cat( |
|
[ |
|
process_image( |
|
image, |
|
self.config, |
|
None, |
|
enable_dynamic_s2=True, |
|
max_tiles=self.config.video_max_tiles, |
|
)[0].half() |
|
for image in images |
|
] |
|
) |
|
for images in media[name] |
|
] |
|
else: |
|
media[name] = [ |
|
process_images(images, self.vision_tower.image_processor, self.config).half() |
|
for images in media[name] |
|
] |
|
else: |
|
raise ValueError(f"Unsupported media type: {name}") |
|
|
|
|
|
input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0) |
|
|
|
|
|
generation_config = generation_config or self.default_generation_config |
|
|
|
|
|
try: |
|
output_ids = self.generate( |
|
input_ids=input_ids, |
|
media=media, |
|
media_config=media_config, |
|
generation_config=generation_config, |
|
logits_processor=xgr_logits_processor, |
|
) |
|
except ValueError: |
|
if not generation_config.do_sample: |
|
raise |
|
|
|
logging.warning("Generation failed with sampling, retrying with greedy decoding.") |
|
generation_config.do_sample = False |
|
output_ids = self.generate( |
|
input_ids=input_ids, |
|
media=media, |
|
media_config=media_config, |
|
generation_config=generation_config, |
|
logits_processor=xgr_logits_processor, |
|
) |
|
|
|
|
|
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() |
|
return response |
|
|
|
@property |
|
def default_generation_config(self) -> GenerationConfig: |
|
generation_config = copy.deepcopy(self.generation_config or GenerationConfig()) |
|
if self.tokenizer.eos_token_id is None: |
|
raise ValueError("Tokenizer must have an EOS token") |
|
if generation_config.max_length == GenerationConfig().max_length: |
|
generation_config.max_length = self.tokenizer.model_max_length |
|
if generation_config.pad_token_id is None: |
|
generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id |
|
if generation_config.bos_token_id is None: |
|
generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id |
|
if generation_config.eos_token_id is None: |
|
generation_config.eos_token_id = self.tokenizer.eos_token_id |
|
return generation_config |
|
|