File size: 11,783 Bytes
d78503a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# This file is modified from https://github.com/haotian-liu/LLaVA/
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import shutil
import warnings

import torch
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig, PretrainedConfig)

from .llava_llama import LlavaLlamaModel

# from llava.model import *
# from llava.model.utils import is_mm_model

CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15

LOGDIR = "."

# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"


def is_mm_model(model_path):
    """
    Check if the model at the given path is a visual language model.

    Args:
        model_path (str): The path to the model.

    Returns:
        bool: True if the model is an MM model, False otherwise.
    """
    config = AutoConfig.from_pretrained(model_path)
    architectures = config.architectures
    for architecture in architectures:
        if "llava" in architecture.lower():
            return True
    return False


def load_pretrained_model(
    model_path,
    model_name,
    model_base=None,
    load_8bit=False,
    load_4bit=False,
    device_map="auto",
    device="cuda",
    **kwargs,
):
    kwargs = {"device_map": device_map, **kwargs}

    if device != "cuda":
        kwargs["device_map"] = {"": device}

    if load_8bit:
        kwargs["load_in_8bit"] = True
    elif load_4bit:
        kwargs["load_in_4bit"] = True
        kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    else:
        kwargs["torch_dtype"] = torch.float16
        # kwargs["torch_dtype"] = torch.bfloat16

    if is_mm_model(model_path):
        # Load LLaVA model
        ## TODO @yunhao: mind fixing lora
        if "lora" in model_name.lower() and model_base is None:
            warnings.warn(
                "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
            )
        if (
            "lora" in model_name.lower() or "dora" in model_name.lower()
        ) and model_base is not None:
            lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
            print(lora_cfg_pretrained)
            print("Loading LLaVA from base model...")
            config = AutoConfig.from_pretrained(model_base)
            prepare_config_for_eval(config, kwargs)
            model = LlavaLlamaModel.from_pretrained(
                model_base, low_cpu_mem_usage=True, config=config, **kwargs
            )
            tokenizer = model.tokenizer
            token_num, tokem_dim = (
                model.llm.lm_head.out_features,
                model.llm.lm_head.in_features,
            )
            if model.llm.lm_head.weight.shape[0] != token_num:
                model.llm.lm_head.weight = torch.nn.Parameter(
                    torch.empty(
                        token_num, tokem_dim, device=model.device, dtype=model.dtype
                    )
                )
                model.llm.embed_tokens.weight = torch.nn.Parameter(
                    torch.empty(
                        token_num, tokem_dim, device=model.device, dtype=model.dtype
                    )
                )

            print("Loading additional LLaVA weights...")
            if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
                non_lora_trainables = torch.load(
                    os.path.join(model_path, "non_lora_trainables.bin"),
                    map_location="cpu",
                )
            else:
                # this is probably from HF Hub
                from huggingface_hub import hf_hub_download

                def load_from_hf(repo_id, filename, subfolder=None):
                    cache_file = hf_hub_download(
                        repo_id=repo_id, filename=filename, subfolder=subfolder
                    )
                    return torch.load(cache_file, map_location="cpu")

                non_lora_trainables = load_from_hf(
                    model_path, "non_lora_trainables.bin"
                )
            non_lora_trainables = {
                (k[11:] if k.startswith("base_model.") else k): v
                for k, v in non_lora_trainables.items()
            }
            if any(k.startswith("model.model.") for k in non_lora_trainables):
                non_lora_trainables = {
                    (k[6:] if k.startswith("model.") else k): v
                    for k, v in non_lora_trainables.items()
                }
            model.load_state_dict(non_lora_trainables, strict=False)

            from peft import PeftModel

            print("Loading LoRA weights...")
            model = PeftModel.from_pretrained(model, model_path)
            print("Merging LoRA weights...")
            model = model.merge_and_unload()
            print("Model is loaded...")
        ## TODO @yunhao: mind fixing this
        elif model_base is not None:
            # this may be mm projector only
            print("Loading LLaVA from base model...")
            cfg_pretrained = AutoConfig.from_pretrained(
                model_path, trust_remote_code=True
            )
            mm_config_wrapper(config, kwargs)
            if "mpt" in model_name.lower():
                if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")):
                    shutil.copyfile(
                        os.path.join(model_base, "configuration_mpt.py"),
                        os.path.join(model_path, "configuration_mpt.py"),
                    )
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
                model = LlavaMPTForCausalLM.from_pretrained(
                    model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(
                    model_base, use_fast=False, legacy=False
                )
                model = LlavaLlamaForCausalLM.from_pretrained(
                    model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
                )
        else:
            config = AutoConfig.from_pretrained(model_path)
            config.resume_path = model_path
            prepare_config_for_eval(config, kwargs)
            if "mpt" in model_name.lower():
                model = LlavaMPTForCausalLM.from_pretrained(
                    model_path, config=config, low_cpu_mem_usage=True, **kwargs
                )
            elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
                model = LlavaMistralForCausalLM.from_pretrained(
                    model_path, config=config, low_cpu_mem_usage=True, **kwargs
                )
            elif "gemma" in model_name.lower():
                model = LlavaGemmaForCausalLM.from_pretrained(
                    model_path, config=config, low_cpu_mem_usage=True, **kwargs
                )
            else:
                # kentang-mit@: llama-2 model
                # config._attn_implementation = "flash_attention_2"
                model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs)
            tokenizer = model.tokenizer
    else:
        # Load language model
        if model_base is not None:
            # PEFT model
            from peft import PeftModel

            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(
                model_base, low_cpu_mem_usage=True, **kwargs
            )
            print(f"Loading LoRA weights from {model_path}")
            model = PeftModel.from_pretrained(model, model_path)
            print(f"Merging weights")
            model = model.merge_and_unload()
            print("Convert to FP16...")
            model.to(torch.float16)
        else:
            if "mpt" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = AutoModelForCausalLM.from_pretrained(
                    model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(
                    model_path, use_fast=False, legacy=False
                )
                model = AutoModelForCausalLM.from_pretrained(
                    model_path, low_cpu_mem_usage=True, **kwargs
                )
    model.eval()
    image_processor = None
    if is_mm_model(model_path):
        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens(
                [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
            )
        model.resize_token_embeddings(len(tokenizer))
        vision_tower = model.get_vision_tower()
        vision_tower.to(device=device, dtype=torch.float16)
        # vision_tower.to(device=device, dtype=torch.bfloat16)
        mm_projector = model.get_mm_projector()
        mm_projector.to(device=device, dtype=torch.float16)
        # mm_projector.to(device=device, dtype=torch.bfloat16)
        image_processor = vision_tower.image_processor

    if hasattr(model.llm.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len


def parse_model_name_or_path(config: PretrainedConfig, model_name="llm", suffix="_cfg"):
    target_model = f"{model_name}{suffix}"
    target_cfg = getattr(config, target_model, None)

    if isinstance(target_cfg, str):
        return target_cfg
    elif isinstance(target_cfg, dict):
        return target_cfg["architectures"][0]
    else:
        raise ValueError(f"Invalid {target_model} configuration!")


def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict):
    try:
        # compatible with deprecated config convention
        if getattr(config, "vision_tower_cfg", None) is None:
            config.vision_tower_cfg = config.mm_vision_tower
    except AttributeError:
        raise ValueError(
            f"Invalid configuration! Cannot find vision_tower in config:\n{config}"
        )

    config.model_dtype = kwargs.pop("torch_dtype").__str__()
    # siglip does not support device_map = "auto"
    vision_tower_name = parse_model_name_or_path(config, "vision_tower")
    if "siglip" in vision_tower_name.lower():
        kwargs["device_map"] = "cuda"