|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import os.path as osp |
|
|
|
from huggingface_hub import repo_exists, snapshot_download |
|
from huggingface_hub.utils import HFValidationError, validate_repo_id |
|
from transformers import AutoConfig, PretrainedConfig |
|
|
|
|
|
def get_model_config(config): |
|
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"] |
|
|
|
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2: |
|
root_path = config._name_or_path |
|
else: |
|
root_path = config.resume_path |
|
|
|
|
|
if root_path is not None and not osp.exists(root_path): |
|
try: |
|
valid_hf_repo = repo_exists(root_path) |
|
except HFValidationError as e: |
|
valid_hf_repo = False |
|
if valid_hf_repo: |
|
root_path = snapshot_download(root_path) |
|
|
|
return_list = [] |
|
for key in default_keys: |
|
cfg = getattr(config, key, None) |
|
if isinstance(cfg, dict): |
|
try: |
|
return_list.append(os.path.join(root_path, key[:-4])) |
|
except: |
|
raise ValueError(f"Cannot find resume path in config for {key}!") |
|
elif isinstance(cfg, PretrainedConfig): |
|
return_list.append(os.path.join(root_path, key[:-4])) |
|
elif isinstance(cfg, str): |
|
return_list.append(cfg) |
|
|
|
return return_list |
|
|
|
|
|
def is_mm_model(model_path): |
|
""" |
|
Check if the model at the given path is a visual language model. |
|
|
|
Args: |
|
model_path (str): The path to the model. |
|
|
|
Returns: |
|
bool: True if the model is an MM model, False otherwise. |
|
""" |
|
config = AutoConfig.from_pretrained(model_path) |
|
architectures = config.architectures |
|
for architecture in architectures: |
|
if "llava" in architecture.lower(): |
|
return True |
|
return False |
|
|
|
|
|
def auto_upgrade(config): |
|
cfg = AutoConfig.from_pretrained(config) |
|
if "llava" in config and "llava" not in cfg.model_type: |
|
assert cfg.model_type == "llama" |
|
print( |
|
"You are using newer LLaVA code base, while the checkpoint of v0 is from older code base." |
|
) |
|
print( |
|
"You must upgrade the checkpoint to the new code base (this can be done automatically)." |
|
) |
|
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]") |
|
if confirm.lower() in ["y", "yes"]: |
|
print("Upgrading checkpoint...") |
|
assert len(cfg.architectures) == 1 |
|
setattr(cfg.__class__, "model_type", "llava") |
|
cfg.architectures[0] = "LlavaLlamaForCausalLM" |
|
cfg.save_pretrained(config) |
|
print("Checkpoint upgraded.") |
|
else: |
|
print("Checkpoint upgrade aborted.") |
|
exit(1) |
|
|