smiling-dove-338 / README.md
ElMad's picture
stackoverflow_tag_classification/initial_run/deberta-v3-small/smiling-dove-338
76811fa verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
model-index:
  - name: smiling-dove-338
    results: []

smiling-dove-338

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3419
  • Hamming Loss: 0.1123
  • Zero One Loss: 1.0
  • Jaccard Score: 1.0
  • Hamming Loss Optimised: 0.1123
  • Hamming Loss Threshold: 0.9000
  • Zero One Loss Optimised: 1.0
  • Zero One Loss Threshold: 0.9000
  • Jaccard Score Optimised: 1.0
  • Jaccard Score Threshold: 0.9000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.738624225351517e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 2024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Hamming Loss Zero One Loss Jaccard Score Hamming Loss Optimised Hamming Loss Threshold Zero One Loss Optimised Zero One Loss Threshold Jaccard Score Optimised Jaccard Score Threshold
No log 1.0 100 0.4189 0.1123 1.0 1.0 0.1123 0.9000 1.0 0.9000 1.0 0.9000
No log 2.0 200 0.3482 0.1123 1.0 1.0 0.1123 0.9000 1.0 0.9000 1.0 0.9000
No log 3.0 300 0.3419 0.1123 1.0 1.0 0.1123 0.9000 1.0 0.9000 1.0 0.9000

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0