BERT_FPB_finetuned

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5238
  • Accuracy: 0.8711
  • F1: 0.8705
  • Precision: 0.8706
  • Recall: 0.8711

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6376 1.0 218 0.4370 0.8144 0.8157 0.8177 0.8144
0.4168 2.0 436 0.4208 0.8376 0.8356 0.8358 0.8376
0.2808 3.0 654 0.4520 0.8608 0.8606 0.8609 0.8608
0.0538 4.0 872 0.5238 0.8711 0.8705 0.8706 0.8711

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Elanthamiljeeva/BERT_FPB_finetuned

Finetuned
(2311)
this model