BERT_FPB_finetuned_v2
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5430
- Accuracy: 0.8789
- F1: 0.8785
- Precision: 0.8784
- Recall: 0.8789
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.611 | 1.0 | 218 | 0.4727 | 0.8170 | 0.8078 | 0.8356 | 0.8170 |
0.4036 | 2.0 | 436 | 0.4077 | 0.8557 | 0.8525 | 0.8546 | 0.8557 |
0.2149 | 3.0 | 654 | 0.4153 | 0.8711 | 0.8715 | 0.8723 | 0.8711 |
0.067 | 4.0 | 872 | 0.5430 | 0.8789 | 0.8785 | 0.8784 | 0.8789 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Tokenizers 0.19.1
- Downloads last month
- 11
Model tree for Elanthamiljeeva/BERT_FPB_finetuned_v2
Base model
google-bert/bert-base-uncased