llama3-L1-SFT-L2-KTO

This model is a fine-tuned version of EllieS/TempReason-L1-llama3 on the EllieS/Temp-L2-DPO dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2122
  • Rewards/chosen: 0.3257
  • Rewards/rejected: -9.5548
  • Rewards/accuracies: 1.0
  • Rewards/margins: 9.8805
  • Logps/rejected: -1018.5145
  • Logps/chosen: -12.0858
  • Logits/rejected: 1.0988
  • Logits/chosen: 0.1932

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.2129 0.4994 1000 0.2124 0.3252 -9.3514 1.0 9.6766 -998.1762 -12.1315 1.1081 0.2036
0.2118 0.9989 2000 0.2122 0.3257 -9.5548 1.0 9.8805 -1018.5145 -12.0858 1.0988 0.1932

Framework versions

  • PEFT 0.7.1
  • Transformers 4.40.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for EllieS/llama3-L1-SFT-L2-KTO

Adapter
(537)
this model

Dataset used to train EllieS/llama3-L1-SFT-L2-KTO