metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: bertweet-emotion-base
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.945
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9285
verified: true
- name: Precision Macro
type: precision
value: 0.8884219402987917
verified: true
- name: Precision Micro
type: precision
value: 0.9285
verified: true
- name: Precision Weighted
type: precision
value: 0.9294663182278102
verified: true
- name: Recall Macro
type: recall
value: 0.8859392810987465
verified: true
- name: Recall Micro
type: recall
value: 0.9285
verified: true
- name: Recall Weighted
type: recall
value: 0.9285
verified: true
- name: F1 Macro
type: f1
value: 0.8863603878501328
verified: true
- name: F1 Micro
type: f1
value: 0.9285
verified: true
- name: F1 Weighted
type: f1
value: 0.9284728367890772
verified: true
- name: loss
type: loss
value: 0.1349370777606964
verified: true
bertweet-emotion-base
This model is a fine-tuned version of Bertweet. It achieves the following results on the evaluation set:
- Loss: 0.1172
- Accuracy: 0.945
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 80
- eval_batch_size: 80
- lr_scheduler_type: linear
- num_epochs: 6.0
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3