leaderboard-pr-bot's picture
Adding Evaluation Results
13d28f7 verified
|
raw
history blame
8.31 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - merge
base_model:
  - mistralai/Mistral-7B-Instruct-v0.2
  - ehartford/dolphin-2.2.1-mistral-7b
  - SciPhi/SciPhi-Mistral-7B-32k
  - ehartford/samantha-1.2-mistral-7b
  - Arc53/docsgpt-7b-mistral
  - HuggingFaceH4/zephyr-7b-beta
  - meta-math/MetaMath-Mistral-7B
  - Open-Orca/Mistral-7B-OpenOrca
  - openchat/openchat-3.5-1210
  - beowolx/MistralHermes-CodePro-7B-v1
  - TIGER-Lab/MAmmoTH-7B-Mistral
  - teknium/OpenHermes-2.5-Mistral-7B
  - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
  - mlabonne/NeuralHermes-2.5-Mistral-7B
model-index:
  - name: Mistral-7B-Merge-14-v0.3
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 65.96
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.29
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.35
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 57.8
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.3
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.26
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.3
          name: Open LLM Leaderboard

Update 2024-01-03

Check out our v0.4 model which is based on this and achieves better average score of 71.19 versus 69.66.

Model Description

This is an update to EmbeddedLLM/Mistral-7B-Merge-14-v0.2 that removes potentially TruthfulQA-contaminated models and non-commercially licensed models:

  1. berkeley-nest/Starling-LM-7B-alpha
  2. Q-bert/MetaMath-Cybertron-Starling
  3. v1olet/v1olet_marcoroni-go-bruins-merge-7B

This is an experiment to test merging 14 models using DARE TIES 🦙

The result is a base model that performs quite well but may need some further chat fine-tuning.

The 14 models are as follows:

  1. mistralai/Mistral-7B-Instruct-v0.2
  2. ehartford/dolphin-2.2.1-mistral-7b
  3. SciPhi/SciPhi-Mistral-7B-32k
  4. ehartford/samantha-1.2-mistral-7b
  5. Arc53/docsgpt-7b-mistral
  6. HuggingFaceH4/zephyr-7b-beta
  7. meta-math/MetaMath-Mistral-7B
  8. Open-Orca/Mistral-7B-OpenOrca
  9. openchat/openchat-3.5-1210
  10. beowolx/MistralHermes-CodePro-7B-v1
  11. TIGER-Lab/MAmmoTH-7B-Mistral
  12. teknium/OpenHermes-2.5-Mistral-7B
  13. Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
  14. mlabonne/NeuralHermes-2.5-Mistral-7B

Open LLM Leaderboard

v0.3 v0.4
Average 69.66 71.19
ARC 65.96 66.81
HellaSwag 85.29 86.15
MMLU 64.35 65.10
TruthfulQA 57.80 58.25
Winogrande 78.30 80.03
GSM8K 66.26 70.81

Chat Template

We tried ChatML and Llama-2 chat template, but feel free to try other templates.

Merge Configuration

The merge config file for this model is here:

models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: ehartford/dolphin-2.2.1-mistral-7b
    parameters:
      weight: 0.08
      density: 0.4
  - model: SciPhi/SciPhi-Mistral-7B-32k
    parameters:
      weight: 0.08
      density: 0.4
  - model: ehartford/samantha-1.2-mistral-7b
    parameters:
      weight: 0.08
      density: 0.4
  - model: Arc53/docsgpt-7b-mistral
    parameters:
      weight: 0.08
      density: 0.4
  - model: HuggingFaceH4/zephyr-7b-beta
    parameters:
      weight: 0.08
      density: 0.4
  - model: meta-math/MetaMath-Mistral-7B
    parameters:
      weight: 0.08
      density: 0.4
  - model: Open-Orca/Mistral-7B-OpenOrca
    parameters:
      weight: 0.08
      density: 0.4
  - model: openchat/openchat-3.5-1210
    parameters:
      weight: 0.08
      density: 0.4
  - model: beowolx/MistralHermes-CodePro-7B-v1
    parameters:
      weight: 0.08
      density: 0.4
  - model: TIGER-Lab/MAmmoTH-7B-Mistral
    parameters:
      weight: 0.08
      density: 0.4
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.08
      density: 0.4
  - model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
    parameters:
      weight: 0.08
      density: 0.4
  - model: mlabonne/NeuralHermes-2.5-Mistral-7B
    parameters:
      weight: 0.08
      density: 0.4
  - model: mistralai/Mistral-7B-Instruct-v0.2
    parameters:
      weight: 0.08
      density: 0.5
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.66
AI2 Reasoning Challenge (25-Shot) 65.96
HellaSwag (10-Shot) 85.29
MMLU (5-Shot) 64.35
TruthfulQA (0-shot) 57.80
Winogrande (5-shot) 78.30
GSM8k (5-shot) 66.26