Phi-3-vision-128k-instruct-onnx
/
onnx
/cpu_and_mobile
/cpu-int4-rtn-block-32-acc-level-4
/image_processing_phi3_v.py
# coding=utf-8 | |
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Image processor class for Phi3-V.""" | |
from typing import List, Optional, Union | |
import numpy as np | |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature | |
from transformers.image_transforms import ( | |
convert_to_rgb, | |
) | |
from transformers.image_utils import ( | |
OPENAI_CLIP_MEAN, | |
OPENAI_CLIP_STD, | |
ImageInput, | |
make_list_of_images, | |
valid_images, | |
) | |
from transformers.utils import TensorType, is_vision_available, logging | |
from transformers import AutoImageProcessor | |
logger = logging.get_logger(__name__) | |
if is_vision_available(): | |
from PIL import Image | |
import torch | |
import torchvision | |
def padding_336(b): | |
width, height = b.size | |
tar = int(np.ceil(height / 336) * 336) | |
top_padding = int((tar - height)/2) | |
bottom_padding = tar - height - top_padding | |
left_padding = 0 | |
right_padding = 0 | |
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255]) | |
return b | |
def calc_padded_size(width, height, padding_unit=336): | |
target_height = int(np.ceil(height / padding_unit) * padding_unit) | |
top_padding = int((target_height - height) / 2) | |
bottom_padding = target_height - height - top_padding | |
left_padding = 0 | |
right_padding = 0 | |
padded_width = width + left_padding + right_padding | |
padded_height = height + top_padding + bottom_padding | |
return padded_width, padded_height | |
def HD_transform(img, hd_num=16): | |
width, height = img.size | |
trans = False | |
if width < height: | |
img = img.transpose(Image.TRANSPOSE) | |
trans = True | |
width, height = img.size | |
ratio = (width/ height) | |
scale = 1 | |
while scale*np.ceil(scale/ratio) <= hd_num: | |
scale += 1 | |
scale -= 1 | |
new_w = int(scale * 336) | |
new_h = int(new_w / ratio) | |
img = torchvision.transforms.functional.resize(img, [new_h, new_w],) | |
img = padding_336(img) | |
width, height = img.size | |
if trans: | |
img = img.transpose(Image.TRANSPOSE) | |
return img | |
def calc_hd_transform_size(width, height, hd_num=16): | |
transposed = False | |
if width < height: | |
width, height = height, width | |
transposed = True | |
ratio = width / height | |
scale = 1 | |
while scale * np.ceil(scale / ratio) <= hd_num: | |
scale += 1 | |
scale -= 1 | |
new_width = int(scale * 336) | |
new_height = int(new_width / ratio) | |
padded_width, padded_height = calc_padded_size(new_width, new_height) | |
if transposed: | |
padded_width, padded_height = padded_height, padded_width | |
return padded_width, padded_height | |
def pad_to_max_num_crops_tensor(images, max_crops=5): | |
""" | |
images: B x 3 x H x W, B<=max_crops | |
""" | |
B, _, H, W = images.shape | |
if B < max_crops: | |
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device) | |
images = torch.cat([images, pad], dim=0) | |
return images | |
class Phi3VImageProcessor(BaseImageProcessor): | |
r""" | |
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques | |
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512) | |
Args: | |
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): | |
Mean to use if normalizing the image. This is a float or list of floats the length of the number of | |
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. | |
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): | |
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the | |
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. | |
Can be overridden by the `image_std` parameter in the `preprocess` method. | |
do_convert_rgb (`bool`, *optional*, defaults to `True`): | |
Whether to convert the image to RGB. | |
""" | |
model_input_names = ["pixel_values"] | |
def __init__( | |
self, | |
num_crops: int = 1, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_convert_rgb: bool = True, | |
**kwargs, | |
) -> None: | |
super().__init__(**kwargs) | |
self.num_crops = num_crops | |
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN | |
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD | |
self.do_convert_rgb = do_convert_rgb | |
def calc_num_image_tokens( | |
self, | |
images: ImageInput | |
): | |
""" Calculate the number of image tokens for each image. | |
Args: | |
images (`ImageInput`): | |
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | |
passing in images with pixel values between 0 and 1, set `do_rescale=False`. | |
""" | |
images = make_list_of_images(images) | |
if not valid_images(images): | |
raise ValueError( | |
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | |
"torch.Tensor, tf.Tensor or jax.ndarray." | |
) | |
images = [image.convert('RGB') for image in images] | |
# (H, W, C) | |
elems = [HD_transform(im, hd_num = self.num_crops) for im in images] | |
shapes = [[im.size[1], im.size[0]] for im in elems] | |
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] | |
return num_img_tokens | |
def calc_num_image_tokens_from_image_size(self, width, height): | |
""" | |
Calculate the number of image tokens for a given image size. | |
Args: | |
width (`int`): Width of the image. | |
height (`int`): Height of the image. | |
""" | |
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops) | |
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12) | |
return num_img_tokens | |
def preprocess( | |
self, | |
images: ImageInput, | |
image_mean: Optional[Union[float, List[float]]] = None, | |
image_std: Optional[Union[float, List[float]]] = None, | |
do_convert_rgb: bool = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
): | |
""" | |
Args: | |
images (`ImageInput`): | |
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | |
passing in images with pixel values between 0 and 1, set `do_rescale=False`. | |
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | |
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. | |
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | |
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to | |
`True`. | |
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | |
Whether to convert the image to RGB. | |
return_tensors (`str` or `TensorType`, *optional*): | |
The type of tensors to return. Can be one of: | |
- Unset: Return a list of `np.ndarray`. | |
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | |
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | |
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | |
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | |
""" | |
image_mean = image_mean if image_mean is not None else self.image_mean | |
image_std = image_std if image_std is not None else self.image_std | |
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb | |
images = make_list_of_images(images) | |
if not valid_images(images): | |
raise ValueError( | |
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | |
"torch.Tensor, tf.Tensor or jax.ndarray." | |
) | |
if do_convert_rgb: | |
images = [convert_to_rgb(image) for image in images] | |
image_sizes = [] | |
img_processor = torchvision.transforms.Compose([ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Normalize(image_mean, image_std) | |
]) | |
# PIL images | |
# HD_transform pad images to size of multiiply of 336, 336 | |
# convert to RGB first | |
images = [image.convert('RGB') for image in images] | |
elems = [HD_transform(im, hd_num = self.num_crops) for im in images] | |
# tensor transform and normalize | |
hd_images = [img_processor(im) for im in elems] | |
# create global image | |
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images] | |
# [(3, h, w)], where h, w is multiple of 336 | |
shapes = [[im.size(1), im.size(2)] for im in hd_images] | |
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] | |
# reshape to channel dimension -> (num_images, num_crops, 3, 336, 336) | |
# (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336) | |
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)] | |
# concat global image and local image | |
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)] | |
# pad to max_num_crops | |
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape] | |
image_transformed = torch.stack(image_transformed, dim=0) | |
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes] | |
padded_images = image_transformed | |
image_sizes = shapes | |
data = {"pixel_values": padded_images, | |
"image_sizes": image_sizes, | |
"num_img_tokens": num_img_tokens | |
} | |
return BatchFeature(data=data, tensor_type=return_tensors) | |
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor) |