Phi-3-vision-128k-instruct-onnx
/
onnx
/cpu_and_mobile
/cpu-int4-rtn-block-32-acc-level-4
/processing_phi3_v.py
# coding=utf-8 | |
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for Phi3-V. | |
""" | |
import re | |
from typing import List, Optional, Union | |
import torch | |
import transformers | |
from transformers.feature_extraction_utils import BatchFeature | |
from transformers.image_utils import ImageInput | |
from transformers.processing_utils import ProcessorMixin | |
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy | |
from transformers.utils import TensorType | |
from .image_processing_phi3_v import Phi3VImageProcessor | |
transformers.Phi3VImageProcessor = Phi3VImageProcessor | |
class Phi3VProcessor(ProcessorMixin): | |
r""" | |
Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor. | |
[`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the | |
[`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information. | |
Args: | |
image_processor ([`Phi3VImageProcessor`], *optional*): | |
The image processor is a required input. | |
tokenizer ([`LlamaTokenizerFast`], *optional*): | |
The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "Phi3VImageProcessor" | |
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") | |
special_image_token = "<|image|>" | |
def __init__(self, image_processor, tokenizer): | |
self.image_processor = image_processor | |
self.tokenizer = tokenizer | |
self.num_img_tokens = image_processor.num_img_tokens | |
self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)] | |
def __call__( | |
self, | |
text: Union[TextInput, List[TextInput]], | |
images: ImageInput = None, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length=None, | |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
) -> BatchFeature: | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
of the above two methods for more information. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. Both channels-first and channels-last formats are supported. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
index) among: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
truncation (`bool`, *optional*): | |
Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
""" | |
if images is not None: | |
image_inputs = self.image_processor(images, return_tensors=return_tensors) | |
else: | |
image_inputs = {} | |
inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors) | |
return inputs | |
def calc_num_image_tokens(self, images: ImageInput): | |
""" Calculate the number of image tokens for each image. | |
Args: | |
images (`ImageInput`): | |
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | |
passing in images with pixel values between 0 and 1, set `do_rescale=False`. | |
""" | |
return self.image_processor.calc_num_image_tokens(images) | |
def calc_num_image_tokens_from_image_size(self, width, height): | |
""" Calculate the number of image token for an image with given width and height. | |
Args: | |
width (`int`): | |
Width of the image. | |
height (`int`): | |
Height of the image. | |
""" | |
return self.image_processor.calc_num_image_tokens_from_image_size(width, height) | |
def special_image_token_id(self): | |
return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | |
def get_special_image_token_id(self): | |
return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | |
def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None): | |
if not len(images): | |
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length) | |
return BatchFeature(data={**model_inputs}) | |
pattern = r"<\|image_\d+\|>" | |
prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)] | |
if 'num_img_tokens' in images: | |
num_img_tokens = images['num_img_tokens'] | |
else: | |
assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided' | |
num_crops = images['num_crops'] | |
num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops] | |
images, image_sizes = images['pixel_values'], images['image_sizes'] | |
# image_tags needs to start from 1 to n | |
image_tags = re.findall(pattern, texts) | |
# image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags] | |
# image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)] | |
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags] | |
unique_image_ids = sorted(list(set(image_ids))) | |
# image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5] | |
# check the condition | |
assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}" | |
# total images must be the same as the number of image tags | |
assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images" | |
image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids] | |
def insert_separator(X, sep_list): | |
if len(X) > len(sep_list): | |
sep_list.append([]) | |
return [ele for sublist in zip(X, sep_list) for ele in sublist] | |
input_ids = [] | |
offset = 0 | |
for x in insert_separator(prompt_chunks, image_ids_pad): | |
input_ids.extend(x[offset:]) | |
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0) | |
attention_mask = (input_ids > -1000000).to(torch.long) | |
return BatchFeature(data={"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"pixel_values": images, | |
"image_sizes": image_sizes}) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |