|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: Qwen/Qwen2-1.5B |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: fine_tuned_wp_callback10 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tuned_wp_callback10 |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0638 |
|
- Accuracy: 0.9897 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.6619 | 0.0285 | 100 | 0.9984 | 0.8816 | |
|
| 0.4074 | 0.0570 | 200 | 0.2584 | 0.9194 | |
|
| 0.2873 | 0.0856 | 300 | 0.5169 | 0.9393 | |
|
| 0.1938 | 0.1141 | 400 | 0.1101 | 0.9843 | |
|
| 0.123 | 0.1426 | 500 | 0.0877 | 0.9830 | |
|
| 0.2114 | 0.1711 | 600 | 0.2161 | 0.9599 | |
|
| 0.1381 | 0.1997 | 700 | 0.1234 | 0.9782 | |
|
| 0.1311 | 0.2282 | 800 | 0.4941 | 0.9496 | |
|
| 0.1807 | 0.2567 | 900 | 0.1084 | 0.9730 | |
|
| 0.143 | 0.2852 | 1000 | 0.1180 | 0.9801 | |
|
| 0.0847 | 0.3137 | 1100 | 0.0704 | 0.9849 | |
|
| 0.0757 | 0.3423 | 1200 | 0.0436 | 0.9884 | |
|
| 0.1022 | 0.3708 | 1300 | 0.0757 | 0.9811 | |
|
| 0.1659 | 0.3993 | 1400 | 0.1003 | 0.9823 | |
|
| 0.1926 | 0.4278 | 1500 | 0.0462 | 0.9901 | |
|
| 0.1627 | 0.4564 | 1600 | 0.0925 | 0.9817 | |
|
| 0.1789 | 0.4849 | 1700 | 0.2666 | 0.9599 | |
|
| 0.1518 | 0.5134 | 1800 | 0.0978 | 0.9775 | |
|
| 0.0888 | 0.5419 | 1900 | 0.0871 | 0.9791 | |
|
| 0.1079 | 0.5705 | 2000 | 0.0390 | 0.9920 | |
|
| 0.04 | 0.5990 | 2100 | 0.0571 | 0.9907 | |
|
| 0.0573 | 0.6275 | 2200 | 0.0521 | 0.9878 | |
|
| 0.0633 | 0.6560 | 2300 | 0.0497 | 0.9891 | |
|
| 0.0857 | 0.6845 | 2400 | 0.0575 | 0.9894 | |
|
| 0.1061 | 0.7131 | 2500 | 0.0628 | 0.9894 | |
|
| 0.0575 | 0.7416 | 2600 | 0.0721 | 0.9891 | |
|
| 0.0741 | 0.7701 | 2700 | 0.1140 | 0.9772 | |
|
| 0.0662 | 0.7986 | 2800 | 0.1028 | 0.9804 | |
|
| 0.0585 | 0.8272 | 2900 | 0.0419 | 0.9926 | |
|
| 0.0647 | 0.8557 | 3000 | 0.0638 | 0.9897 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu126 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|