File size: 1,229 Bytes
42ce853 a6cf468 4ffce0c f8e3803 e313132 42ce853 ada1c35 42ce853 a6cf468 ada1c35 1b9feb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
pipeline_tag: text-classification
metrics:
- accuracy
license: mit
datasets:
- mteb/twentynewsgroups-clustering
language:
- en
library_name: sklearn
---
# BERT Text Classification Model
This is a simple model for text classification using BERT.
## Usage
To use the model, you can call the `classify_text` function with a text input, and it will return the predicted class label.
```python
text = "This is a positive review."
predicted_class = classify_text(text)
print("Predicted class:", predicted_class)
from transformers import BertTokenizer, BertForSequenceClassification
# Load pre-trained BERT tokenizer and model
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
# Define a function to classify text
def classify_text(text):
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True)
outputs = model(**inputs)
logits = outputs.logits
probabilities = logits.softmax(dim=1)
predicted_class = probabilities.argmax(dim=1).item()
return predicted_class
# Example usage
text = "This is a positive review."
predicted_class = classify_text(text)
print("Predicted class:", predicted_class) |