donut-base-eco_v3 / README.md
EnricocoChanel's picture
End of training
16dd2b8 verified
metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
model-index:
  - name: donut-base-eco_v3
    results: []

donut-base-eco_v3

This model is a fine-tuned version of naver-clova-ix/donut-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
5.7637 0.05 10 4.3966
4.7131 0.1 20 3.4323
3.6024 0.15 30 2.7923
2.8768 0.2 40 2.4152
3.0689 0.25 50 2.2683
2.4879 0.3 60 2.0826
2.3029 0.35 70 1.9588
2.2746 0.4 80 1.8516
2.7149 0.45 90 1.7636
2.1114 0.51 100 1.7028
2.2623 0.56 110 1.6586
1.826 0.61 120 1.5988
2.0984 0.66 130 1.5454
1.4917 0.71 140 1.5161
1.4414 0.76 150 1.4859
1.9446 0.81 160 1.4424
1.923 0.86 170 1.4239
1.5272 0.91 180 1.4003
1.8752 0.96 190 1.3695
1.1883 1.01 200 1.3520
1.432 1.06 210 1.3340
1.6104 1.11 220 1.3292
1.3261 1.16 230 1.3174
1.3727 1.21 240 1.3024
1.6194 1.26 250 1.2777
1.6811 1.31 260 1.2793
1.3327 1.36 270 1.2636
1.2379 1.41 280 1.2492
1.8061 1.46 290 1.2423
1.6403 1.52 300 1.2333
1.5277 1.57 310 1.2245
1.8438 1.62 320 1.2114
1.6035 1.67 330 1.2127
1.4338 1.72 340 1.2061
1.4517 1.77 350 1.1997
1.7217 1.82 360 1.1891
1.1229 1.87 370 1.1836
1.2508 1.92 380 1.1767
1.0494 1.97 390 1.1726
1.3746 2.02 400 1.1710
0.8878 2.07 410 1.1708
1.4181 2.12 420 1.1642
1.1233 2.17 430 1.1627
1.4889 2.22 440 1.1654
1.4098 2.27 450 1.1592
1.4169 2.32 460 1.1526
1.3255 2.37 470 1.1470
1.4087 2.42 480 1.1449
0.9108 2.47 490 1.1455
1.4604 2.53 500 1.1425
1.47 2.58 510 1.1334
1.4215 2.63 520 1.1313
1.2907 2.68 530 1.1285
1.2292 2.73 540 1.1273
1.3936 2.78 550 1.1261
1.1875 2.83 560 1.1250
1.4496 2.88 570 1.1245
1.3273 2.93 580 1.1239
1.4324 2.98 590 1.1236

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2