Text Generation
Transformers
Safetensors
English
mistral
text-generation-inference
unsloth
trl
Eval Results
Inference Endpoints
legolasyiu commited on
Commit
2177b45
·
verified ·
1 Parent(s): 5160ecc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md CHANGED
@@ -11,6 +11,25 @@ tags:
11
  - trl
12
  ---
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  # Uploaded model
15
 
16
  - **Developed by:** EpistemeAI
@@ -20,3 +39,82 @@ tags:
20
  This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  - trl
12
  ---
13
 
14
+
15
+ <img src="https://huggingface.co/EpistemeAI/Fireball-Mistral-Nemo-Base-2407-v1-DPO2/resolve/main/fireball.JPG" width="200"/>
16
+
17
+
18
+ # Fireball-Mistral-Nemo-Base-2407-V2
19
+ This model is super fine-tune to provide better coding and better response(from first fine-tune) than Llama-3.1-8B and Google Gemma 2 9B.
20
+ Further fine tuned with ORPO method with dataset
21
+ - reciperesearch/dolphin-sft-v0.1-preference
22
+
23
+ # Benchmark
24
+ - TBD
25
+
26
+ ## Training Dataset
27
+ Supervised fine-tuning with dataset:
28
+ - candenizkocak/code-alpaca-297k
29
+ - yahma/alpaca-cleaned
30
+
31
+
32
+
33
  # Uploaded model
34
 
35
  - **Developed by:** EpistemeAI
 
39
  This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
40
 
41
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+ # Model Card for Mistral-Nemo-Base-2407
50
+
51
+ The Mistral-Nemo-Base-2407 Large Language Model (LLM) is a pretrained generative text model of 12B parameters trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
52
+
53
+ For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).
54
+
55
+ ## Key features
56
+ - Released under the **Apache 2 License**
57
+ - Pre-trained and instructed versions
58
+ - Trained with a **128k context window**
59
+ - Trained on a large proportion of **multilingual and code data**
60
+ - Drop-in replacement of Mistral 7B
61
+
62
+ ## Model Architecture
63
+ Mistral Nemo is a transformer model, with the following architecture choices:
64
+ - **Layers:** 40
65
+ - **Dim:** 5,120
66
+ - **Head dim:** 128
67
+ - **Hidden dim:** 14,436
68
+ - **Activation Function:** SwiGLU
69
+ - **Number of heads:** 32
70
+ - **Number of kv-heads:** 8 (GQA)
71
+ - **Vocabulary size:** 2**17 ~= 128k
72
+ - **Rotary embeddings (theta = 1M)**
73
+
74
+ #### Demo
75
+
76
+ After installing `mistral_inference`, a `mistral-demo` CLI command should be available in your environment.
77
+
78
+ ```
79
+ mistral-demo $HOME/mistral_models/Nemo-v0.1
80
+ ```
81
+
82
+ ### Transformers
83
+
84
+ > [!IMPORTANT]
85
+ > NOTE: Until a new release has been made, you need to install transformers from source:
86
+ > ```sh
87
+ > pip install git+https://github.com/huggingface/transformers.git
88
+ > ```
89
+
90
+ If you want to use Hugging Face `transformers` to generate text, you can do something like this.
91
+
92
+ ```py
93
+ from transformers import AutoModelForCausalLM, AutoTokenizer
94
+ model_id = "EpistemeAI/Fireball-Mistral-Nemo-Base-2407-sft-v2.1"
95
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
96
+ model = AutoModelForCausalLM.from_pretrained(model_id)
97
+ inputs = tokenizer("Hello my name is", return_tensors="pt")
98
+ outputs = model.generate(**inputs, max_new_tokens=20)
99
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
100
+ ```
101
+
102
+ > [!TIP]
103
+ > Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
104
+
105
+ ## Note
106
+
107
+ `Mistral-Nemo-Base-2407` is a pretrained base model and therefore does not have any moderation mechanisms.
108
+
109
+
110
+ ### Citation for yahma/alpaca-cleaned dataset
111
+ ```
112
+ @misc{alpaca,
113
+ author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
114
+ title = {Stanford Alpaca: An Instruction-following LLaMA model},
115
+ year = {2023},
116
+ publisher = {GitHub},
117
+ journal = {GitHub repository},
118
+ howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
119
+ }
120
+ ```