Papy_2_Llama-3.1-8B-Instruct_text
This is a finetuned version Llama-3.1-8B-Instruct specialized on reconstructing spans of 1–20 missing characters in ancient Greek documentary papyri. In spans of 1–10 missing characters it did so with a Character Error Rate of 14.9%, a top-1 accuracy of 73.5%, and top-20 of 85.9% on a test set of 7,811 papyrus editions. It replaces Papy_1_Llama-3.1-8B-Instruct_text. See https://arxiv.org/abs/2409.13870.
Usage
To run the model on a GPU with large memory capacity, follow these steps:
1. Download and load the model
import json
from transformers import pipeline, AutoTokenizer, LlamaForCausalLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import torch
import warnings
warnings.filterwarnings("ignore", message=".*copying from a non-meta parameter in the checkpoint*")
model_id = "Ericu950/Papy_2_Llama-3.1-8B-Instruct_text"
with init_empty_weights():
model = LlamaForCausalLM.from_pretrained(model_id)
model = load_checkpoint_and_dispatch(
model,
model_id,
device_map="auto",
offload_folder="offload",
offload_state_dict=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
)
2. Run inference on a papyrus fragment of your choice
papyrus_edition = """
ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι
εκ τησ γενομενησ και μετηλλαχυιασ αυτου γυναικοσ -------------------------
απο τησ αυτησ πολεωσ εν αγυιαι συγχωρειν ειναι ----------------------------------
--------------------σ αυτωι εξ ησ συνεστιν ------------------------------------
----τησ αυτησ γενεασ την υπαρχουσαν αυτωι οικιαν ------------
------------------ ---------καὶ αιθριον και αυλη απερ ο υιοσ διοκοροσ --------------------------
--------εγραψεν του δ αυτου διοσκορου ειναι ------------------------------------
---------- και προ κατενγεγυηται τα δικαια --------------------------------------
νησ κατα τουσ τησ χωρασ νομουσ· εαν δε μη ---------------------------------------
υπ αυτου τηι του διοσκορου σημαινομενηι -----------------------------------ενοικισμωι του
ημισουσ μερουσ τησ προκειμενησ οικιασ --------------------------------- διοσκοροσ την τουτων αποχην
---------------------------------------------μηδ υπεναντιον τουτοισ επιτελειν μηδε
------------------------------------------------ ανασκευηι κατ αυτησ τιθεσθαι ομολογιαν μηδε
----------------------------------- επιτελεσαι η χωρισ του κυρια ειναι τα διομολογημενα
παραβαινειν, εκτεινειν δε τον παραβησομενον τωι υιωι διοσκορωι η τοισ παρ αυτου καθ εκαστην
εφοδον το τε βλαβοσ και επιτιμον αργυριου δραχμασ 0 και εισ το δημο[7 missing letters] ισασ και μηθεν
ησσον· δ -----ιων ομολογιαν συνεχωρησεν·
"""
system_prompt = "Fill in the missing letters in this papyrus fragment!"
input_messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": papyrus_edition},
]
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = generation_pipeline(
input_messages,
max_new_tokens=10,
num_beams=30, # Set this as high as your memory will allow!
num_return_sequences=10,
early_stopping=True,
)
beam_contents = []
for output in outputs:
generated_text = output.get('generated_text', [])
for item in generated_text:
if item.get('role') == 'assistant':
beam_contents.append(item.get('content'))
real_response = "σιον τασ"
print(f"The masked sequence: {real_response}")
for i, content in enumerate(beam_contents, start=1):
print(f"Suggestion {i}: {content}")
Expected Output:
The masked sequence: σιον τασ
Suggestion 1: σιον τασ
Suggestion 2: σιν τασ ι
Suggestion 3: σ τασ ισα
Suggestion 4: σιου τασ
Suggestion 5: συ τασ ισ
Suggestion 6: ιον τασ ι
Suggestion 7: ν τασ ισα
Suggestion 8: σ ισασ κα
Suggestion 9: σασ τασ ι
Suggestion 10: σιωι τασ
Usage on free tier in Google Colab
If you don’t have access to a larger GPU but want to try the model out, you can run it in a quantized format in Google Colab. The quality of the responses will deteriorate significantly! Follow these steps:
Step 1: Connect to free GPU
- Click Connect arrow_drop_down near the top right of the notebook.
- Select Change runtime type.
- In the modal window, select T4 GPU as your hardware accelerator.
- Click Save.
- Click the Connect button to connect to your runtime. After some time, the button will present a green checkmark, along with RAM and disk usage graphs. This indicates that a server has successfully been created with your required hardware.
Step 2: Install Dependencies
!pip install -U bitsandbytes
import os
os._exit(00)
Step 3: Download and quantize the model
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained("Ericu950/Papy_2_Llama-3.1-8B-Instruct_text",
device_map = "auto", quantization_config = quant_config)
tokenizer = AutoTokenizer.from_pretrained("Ericu950/Papy_2_Llama-3.1-8B-Instruct_text")
generation_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
)
Step 4: Run inference on a papyrus fragment of your choice
papyrus_edition = """
ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι
εκ τησ γενομενησ και μετηλλαχυιασ αυτου γυναικοσ -------------------------
απο τησ αυτησ πολεωσ εν αγυιαι συγχωρειν ειναι ----------------------------------
--------------------σ αυτωι εξ ησ συνεστιν ------------------------------------
----τησ αυτησ γενεασ την υπαρχουσαν αυτωι οικιαν ------------
------------------ ---------καὶ αιθριον και αυλη απερ ο υιοσ διοκοροσ --------------------------
--------εγραψεν του δ αυτου διοσκορου ειναι ------------------------------------
---------- και προ κατενγεγυηται τα δικαια --------------------------------------
νησ κατα τουσ τησ χωρασ νομουσ· εαν δε μη ---------------------------------------
υπ αυτου τηι του διοσκορου σημαινομενηι -----------------------------------ενοικισμωι του
ημισουσ μερουσ τησ προκειμενησ οικιασ --------------------------------- διοσκοροσ την τουτων αποχην
---------------------------------------------μηδ υπεναντιον τουτοισ επιτελειν μηδε
------------------------------------------------ ανασκευηι κατ αυτησ τιθεσθαι ομολογιαν μηδε
----------------------------------- επιτελεσαι η χωρισ του κυρια ειναι τα διομολογημενα
παραβαινειν, εκτεινειν δε τον παραβησομενον τωι υιωι διοσκορωι η τοισ παρ αυτου καθ εκαστην
εφοδον το τε βλαβοσ και επιτιμον αργυριου δραχμασ 0 και εισ το δημο[7 missing letters] ισασ και μηθεν
ησσον· δ -----ιων ομολογιαν συνεχωρησεν·
"""
system_prompt = "Fill in the missing letters in this papyrus fragment!"
input_messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": papyrus_edition},
]
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = generation_pipeline(
input_messages,
max_new_tokens=10,
num_beams=30, # Set this as high as your memory will allow!
num_return_sequences=10,
early_stopping=True,
)
beam_contents = []
for output in outputs:
generated_text = output.get('generated_text', [])
for item in generated_text:
if item.get('role') == 'assistant':
beam_contents.append(item.get('content'))
real_response = "σιον τασ"
print(f"The masked characters: {real_response}")
for i, content in enumerate(beam_contents, start=1):
print(f"Suggestion {i}: {content}")
Expected Output:
The masked characters: σιον τασ
Suggestion 1: σιον τα 00·
Suggestion 2: σιον αυτωι·
Suggestion 3: σιον 00 00
Suggestion 4: σιον και 0·
Suggestion 5: σιον τα 00··
Suggestion 6: σιον τασ 0
Suggestion 7: σιον τα 000·
Suggestion 8: σιον τα 0ο
Suggestion 9: σιον τασασ·
Suggestion 10: σιον τα 00
Observe that performance declines! If we change
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
in the second cell to
load_in_8bit=True,
we get
The masked characters: σιον τασ
Suggestion 1: σιον τασ
Suggestion 2: σιν τασ ι
Suggestion 3: σ τασ ισα
Suggestion 4: σιου τασ
Suggestion 5: σ ισασ κα
Suggestion 6: συ τασ ισ
Suggestion 7: σασ τασ ι
Suggestion 8: ν τασ ισα
Suggestion 9: ιον τασ ι
Suggestion 10: σισ τασ ι
Information about configuration for merging
The finetuned model was remerged with Llama-3.1-8B-Instruct using the TIES merge method. This did not afect CER or top-1 accuracy, but the effect on top-20 accuracy was positive. The following YAML configuration was used:
models:
- model: original # Llama 3.1
- model: DDbDP_reconstructer_5 # A model fintuned on the 95 % of the DDbDP for 11 epochs
parameters:
density: 1.1
weight: 0.5
merge_method: ties
base_model: original # Llama 3.1
parameters:
normalize: true
dtype: bfloat16
- Downloads last month
- 17