Ermira's picture
Training in progress epoch 2
95310c2
metadata
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: Ermira/bert-base-multilingual-uncased-finetuned-ner
    results: []

Ermira/bert-base-multilingual-uncased-finetuned-ner

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0284
  • Validation Loss: 0.0543
  • Train Precision: 0.9354
  • Train Recall: 0.9459
  • Train F1: 0.9406
  • Train Accuracy: 0.9860
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.1485 0.0642 0.9083 0.9288 0.9184 0.9820 0
0.0482 0.0561 0.9270 0.9424 0.9347 0.9846 1
0.0284 0.0543 0.9354 0.9459 0.9406 0.9860 2

Framework versions

  • Transformers 4.41.1
  • TensorFlow 2.15.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1