metadata
library_name: transformers
tags:
- generated_from_trainer
datasets:
- 2025-01_conversations_truncated.jsonl
model-index:
- name: outputs/
results: []
See axolotl config
axolotl version: 0.6.0
base_model: ./meta-llama_Llama-3.2-3B
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: 2025-01_conversations_truncated.jsonl
type: chat_template
chat_template: llama3
field_messages: conversations
message_field_role: from
message_field_content: value
roles:
user:
- human
assistant:
- gpt
system:
- system
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/
dataset_prepared_path: last_run_prepared
sequence_len: 4096
eval_sample_packing: false
sample_packing: true
pad_to_sequence_len: true
wandb_project: JVCGPT Light 3b base
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000007
train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 100
eval_table_size:
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
save_safetensors: true
save_total_limit: 10
outputs/
This model was trained from scratch on the 2025-01_conversations_truncated.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.1520
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6055 | 1.0006 | 789 | 1.1893 |
0.5619 | 2.0006 | 1578 | 1.1576 |
0.4873 | 3.0006 | 2367 | 1.1522 |
1.2133 | 3.9917 | 3148 | 1.1520 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0