File size: 16,541 Bytes
14e3683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: <Question> What will the ministry of tourism do to boost the flow of tourists
    to the country during the holiday season? </Question> <Answer> Anticipating a
    surge in holiday travel, the Ministry of Tourism is rolling out a multi-pronged
    strategy to attract tourists and ensure a memorable experience. The centerpiece
    is the "Festive Wonderland" campaign, transforming major cities into enchanting
    winter scenes with illuminated streets, snow machines, and festive markets overflowing
    with local crafts and delicacies. </Answer> <Question> Was the cost of such a
    strategy announced by the ministry? </Question>
- text: <Question> How does the company offer help for parents with their children?
    </Question> <Answer> At Jack Track, we understand the importance of supporting
    our employees who are parents. We offer a range of assistance programs to help
    parents with their children. Our comprehensive benefits package includes flexible
    work schedules and remote work options, allowing parents to balance their professional
    and family responsibilities effectively. </Answer> <Question> How often can we
    work remotely? </Question>
- text: <Question> Is Store Manager considered rank 3 or rank 2? </Question> <Answer>
    In our organization's hierarchical structure, the position of Store Manager is
    considered as a Rank 2 role. </Answer> <Question> What does this level of responsibility
    typically involves? </Question>
- text: <Question> How many days off do we get during Easter? </Question> <Answer>
    During Easter, employees typically enjoy a generous 15-day break, which includes
    weekends and public holidays. This extended period allows for ample time to relax
    and celebrate the holiday season with family and friends. </Answer> <Question>
    What about Christmas? </Question>
- text: <Question> What is the highest grossing movie at the box office? </Question>
    <Answer> The highest-grossing movie at the box office is Avatar. </Answer> <Question>
    How much money did the movie make? </Question>
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9347826086956522
      name: Accuracy
---

# SetFit with sentence-transformers/all-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | <ul><li>'<Question> Who was the Germany national team captain during the 2006 World cup? </Question> <Answer> Michael Ballack was the Germany national team captrain during the 2006 world cup </Answer> <Question> How old was he? </Question>'</li><li>'<Question> Who was the Germany national team captain during the 2006 World cup? </Question> <Answer> Michael Ballack was the Germany national team captrain during the 2006 world cup </Answer> <Question> Who won it back then? </Question>'</li><li>'<Question> How old was Ronaldo when he moved to Real Madrid? </Question> <Answer> Ronaldo moved to Real Madrid after leaving Inter when he was 25 years old. </Answer> <Question> What year did he leave? </Question>'</li></ul>                                                                                                                                                                                                                              |
| 0     | <ul><li>'<Question> Which ocean surrounds Antarctica? </Question> <Answer> The ocean that surrounds Antarctica is the Southern Ocean. </Answer> <Question> What challenges do scientists face when conducting research in Antarctica? </Question>'</li><li>'<Question> Name a country in Oceania. </Question> <Answer> A country in Oceania is Australia. </Answer> <Question> What are some of the popular tourist attractions in Oceania? </Question>'</li><li>"<Question> What's the significance of the Suez Canal? </Question> <Answer> The Suez Canal holds great importance as a crucial Egyptian waterway that links the Mediterranean Sea to the Red Sea. It plays a pivotal role in enhancing maritime trade and transportation between Europe and Asia, providing ships with a shorter and safer route compared to the arduous journey around the southern tip of Africa. </Answer> <Question> How has the Suez Canal impacted global trade? </Question>"</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9348   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("<Question> What is the highest grossing movie at the box office? </Question> <Answer> The highest-grossing movie at the box office is Avatar. </Answer> <Question> How much money did the movie make? </Question>")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 14  | 44.4406 | 221 |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 240                   |
| 1     | 248                   |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0008 | 1    | 0.5762        | -               |
| 0.0410 | 50   | 0.2742        | -               |
| 0.0820 | 100  | 0.2188        | -               |
| 0.1230 | 150  | 0.0586        | -               |
| 0.1639 | 200  | 0.0194        | -               |
| 0.2049 | 250  | 0.0028        | -               |
| 0.2459 | 300  | 0.0004        | -               |
| 0.2869 | 350  | 0.0003        | -               |
| 0.3279 | 400  | 0.0002        | -               |
| 0.3689 | 450  | 0.0001        | -               |
| 0.4098 | 500  | 0.0001        | -               |
| 0.4508 | 550  | 0.0001        | -               |
| 0.4918 | 600  | 0.0001        | -               |
| 0.5328 | 650  | 0.0006        | -               |
| 0.5738 | 700  | 0.0001        | -               |
| 0.6148 | 750  | 0.0001        | -               |
| 0.6557 | 800  | 0.0001        | -               |
| 0.6967 | 850  | 0.0001        | -               |
| 0.7377 | 900  | 0.0001        | -               |
| 0.7787 | 950  | 0.0001        | -               |
| 0.8197 | 1000 | 0.0001        | -               |
| 0.8607 | 1050 | 0.0001        | -               |
| 0.9016 | 1100 | 0.0001        | -               |
| 0.9426 | 1150 | 0.0001        | -               |
| 0.9836 | 1200 | 0.0           | -               |
| 0.0008 | 1    | 0.0           | -               |
| 0.0410 | 50   | 0.0           | -               |
| 0.0820 | 100  | 0.0003        | -               |
| 0.1230 | 150  | 0.0005        | -               |
| 0.1639 | 200  | 0.0013        | -               |
| 0.2049 | 250  | 0.0008        | -               |
| 0.2459 | 300  | 0.0           | -               |
| 0.2869 | 350  | 0.0           | -               |
| 0.3279 | 400  | 0.0           | -               |
| 0.3689 | 450  | 0.0           | -               |
| 0.4098 | 500  | 0.0           | -               |
| 0.4508 | 550  | 0.0           | -               |
| 0.4918 | 600  | 0.0           | -               |
| 0.5328 | 650  | 0.0           | -               |
| 0.5738 | 700  | 0.0           | -               |
| 0.6148 | 750  | 0.0           | -               |
| 0.6557 | 800  | 0.008         | -               |
| 0.6967 | 850  | 0.0285        | -               |
| 0.7377 | 900  | 0.012         | -               |
| 0.7787 | 950  | 0.0073        | -               |
| 0.8197 | 1000 | 0.0013        | -               |
| 0.8607 | 1050 | 0.0           | -               |
| 0.9016 | 1100 | 0.0           | -               |
| 0.9426 | 1150 | 0.0           | -               |
| 0.9836 | 1200 | 0.0013        | -               |
| 1.0246 | 1250 | 0.0013        | -               |
| 1.0656 | 1300 | 0.0           | -               |
| 1.1066 | 1350 | 0.0           | -               |
| 1.1475 | 1400 | 0.0           | -               |
| 1.1885 | 1450 | 0.0           | -               |
| 1.2295 | 1500 | 0.0           | -               |
| 1.2705 | 1550 | 0.0           | -               |
| 1.3115 | 1600 | 0.0           | -               |
| 1.3525 | 1650 | 0.0022        | -               |
| 1.3934 | 1700 | 0.0           | -               |
| 1.4344 | 1750 | 0.0           | -               |
| 1.4754 | 1800 | 0.0           | -               |
| 1.5164 | 1850 | 0.0013        | -               |
| 1.5574 | 1900 | 0.0           | -               |
| 1.5984 | 1950 | 0.0           | -               |
| 1.6393 | 2000 | 0.0           | -               |
| 1.6803 | 2050 | 0.0           | -               |
| 1.7213 | 2100 | 0.0           | -               |
| 1.7623 | 2150 | 0.0           | -               |
| 1.8033 | 2200 | 0.0           | -               |
| 1.8443 | 2250 | 0.0048        | -               |
| 1.8852 | 2300 | 0.0023        | -               |
| 1.9262 | 2350 | 0.0049        | -               |
| 1.9672 | 2400 | 0.0012        | -               |
| 2.0082 | 2450 | 0.0           | -               |
| 2.0492 | 2500 | 0.0           | -               |
| 2.0902 | 2550 | 0.0           | -               |
| 2.1311 | 2600 | 0.0           | -               |
| 2.1721 | 2650 | 0.0           | -               |
| 2.2131 | 2700 | 0.0           | -               |
| 2.2541 | 2750 | 0.0           | -               |
| 2.2951 | 2800 | 0.0           | -               |
| 2.3361 | 2850 | 0.0           | -               |
| 2.3770 | 2900 | 0.0           | -               |
| 2.4180 | 2950 | 0.0           | -               |
| 2.4590 | 3000 | 0.0           | -               |
| 2.5    | 3050 | 0.0           | -               |
| 2.5410 | 3100 | 0.0           | -               |
| 2.5820 | 3150 | 0.0           | -               |
| 2.6230 | 3200 | 0.0           | -               |
| 2.6639 | 3250 | 0.0           | -               |
| 2.7049 | 3300 | 0.0           | -               |
| 2.7459 | 3350 | 0.0           | -               |
| 2.7869 | 3400 | 0.0           | -               |
| 2.8279 | 3450 | 0.0           | -               |
| 2.8689 | 3500 | 0.0           | -               |
| 2.9098 | 3550 | 0.0007        | -               |
| 2.9508 | 3600 | 0.0           | -               |
| 2.9918 | 3650 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.1.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->