Upload PPO LunarLander-v2 trained agent
Browse files- README.md +21 -12
- config.json +1 -1
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -6,23 +6,32 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: 278.20 +/- 15.91
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: LunarLander-v2
|
20 |
type: LunarLander-v2
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: PPO
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: LunarLander-v2
|
16 |
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 253.25 +/- 41.87
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f83cf37e200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f83cf37e290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f83cf37e320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f83cf37e3b0>", "_build": "<function ActorCriticPolicy._build at 0x7f83cf37e440>", "forward": "<function ActorCriticPolicy.forward at 0x7f83cf37e4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f83cf37e560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f83cf37e5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f83cf37e680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f83cf37e710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f83cf37e7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f83cf3ce300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651908975.6397204, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0AIz6Oj4a8ikt5OxKQH7oKxe69eI75ugAAAAAAAIA/zZwhva539roUmZk8ZTf4O50YFbxr0eI8AACAPwAAgD/aRbs96jpPPu0gqb5gg/e+S3D4vYd6l70AAAAAAAAAAEaePb6Our89p6iLPvmTrL7oSzE8K9nWPAAAAAAAAAAAs1pJPZLzrj+3kSw/OnW4vpdOorxp2Is9AAAAAAAAAABzF6C+SzzhPuASYD4sxuK+CuUmvhwVOT4AAAAAAAAAACasmL2uR6u2stqZM7pB/S7jzO05bKutswAAgD8AAIA/M2dNPPY8NrqDqkk9oVbjsg7qkbvZdsUwAACAPwAAgD+zI9M9WuJeP+2PFz2ABSq/PtBmPouBub0AAAAAAAAAAM1GQrxH9Cs+ce+gu4cL3r64Bx691PcMPAAAAAAAAAAAuqJWPpfbAT9W5Ey+B4vrvr8+tj123H29AAAAAAAAAADu35i+75RcP96sEr5ebRu/TDuovp7rTj0AAAAAAAAAABpcUD1NGdE+Q9/evbMTGb+oqi894KVgvQAAAAAAAAAAZsoUPaMMoD+iVQA+QM8bvwotNT11TK09AAAAAAAAAADm/WU9Z04VPmYQEr0mPNG+vaGkPB7D9rwAAAAAAAAAAA27TT5P74I/5MSFPmZsC78OQrA+fKoqvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIukxNgncRckCUhpRSlIwBbJRL1owBdJRHQLpmbyZa3Zx1fZQoaAZoCWgPQwjrOlRT0utxQJSGlFKUaBVLj2gWR0C6ZnzLjghsdX2UKGgGaAloD0MIuLHZkSoOc0CUhpRSlGgVS9BoFkdAumaeP1ct5HV9lChoBmgJaA9DCPUtc7osa3JAlIaUUpRoFUvEaBZHQLpmzcNpdrx1fZQoaAZoCWgPQwisb2By4zJyQJSGlFKUaBVLxGgWR0C6Zs/VmSQpdX2UKGgGaAloD0MInWUWoZjocUCUhpRSlGgVS7toFkdAumcN84Pwu3V9lChoBmgJaA9DCCum0k/48HBAlIaUUpRoFUu+aBZHQLpnIm7J4jd1fZQoaAZoCWgPQwi4dw360oNyQJSGlFKUaBVLpmgWR0C6ZyQGSpzcdX2UKGgGaAloD0MI7Es2HuySbkCUhpRSlGgVS6JoFkdAumdBisny/nV9lChoBmgJaA9DCLVRnQ7kUG9AlIaUUpRoFUuyaBZHQLpntuiN83N1fZQoaAZoCWgPQwjoFORnY2twQJSGlFKUaBVL7GgWR0C6Z7uk+HJtdX2UKGgGaAloD0MI8E4+PXZpc0CUhpRSlGgVS89oFkdAumfPbdrO7nV9lChoBmgJaA9DCKOSOgEN13FAlIaUUpRoFUu6aBZHQLpn3stCiRJ1fZQoaAZoCWgPQwhWvJF5ZPdwQJSGlFKUaBVLz2gWR0C6Z+0tyxRmdX2UKGgGaAloD0MIJVryeNpHcECUhpRSlGgVS7VoFkdAumfv7vXsgXV9lChoBmgJaA9DCDIfEOiMVnJAlIaUUpRoFUulaBZHQLpn9xnnMdN1fZQoaAZoCWgPQwgpkq8EEslyQJSGlFKUaBVL22gWR0C6aDBO58SgdX2UKGgGaAloD0MIcXUAxJ0UcUCUhpRSlGgVS8hoFkdAumh1TsIE83V9lChoBmgJaA9DCFZFuMmok2FAlIaUUpRoFU3oA2gWR0C6aIfNmlImdX2UKGgGaAloD0MIVRSvsvY/ckCUhpRSlGgVS9toFkdAumijEaVD8nV9lChoBmgJaA9DCJ/HKM+8Z3BAlIaUUpRoFUu5aBZHQLpotj7Q9id1fZQoaAZoCWgPQwh6UiY1tGBvQJSGlFKUaBVLu2gWR0C6aLlschkidX2UKGgGaAloD0MI4/4j02HvcECUhpRSlGgVS79oFkdAumjfiHZbp3V9lChoBmgJaA9DCNlbyvniuHFAlIaUUpRoFUvmaBZHQLpo+JVsDW91fZQoaAZoCWgPQwh1q+ekN35xQJSGlFKUaBVLmWgWR0C6aSkDIRywdX2UKGgGaAloD0MIm6xRD9FJb0CUhpRSlGgVS6hoFkdAumk5YGMXJ3V9lChoBmgJaA9DCOC7zRvnjnBAlIaUUpRoFUu5aBZHQLppPEehf0F1fZQoaAZoCWgPQwh2+daHdexwQJSGlFKUaBVLwmgWR0C6aUnnhbW3dX2UKGgGaAloD0MImUnUC368cUCUhpRSlGgVS6doFkdAumlNBa9sanV9lChoBmgJaA9DCBpR2ht8h3FAlIaUUpRoFUvLaBZHQLppinwXqJN1fZQoaAZoCWgPQwj+LJYiuSxyQJSGlFKUaBVL2WgWR0C6aYnAqNIcdX2UKGgGaAloD0MIoMIRpBIjckCUhpRSlGgVS5xoFkdAummoeKbay3V9lChoBmgJaA9DCBno2heQcnFAlIaUUpRoFUugaBZHQLpp7K4x1xN1fZQoaAZoCWgPQwiFIt3PKaNyQJSGlFKUaBVL5WgWR0C6afxxo7FLdX2UKGgGaAloD0MICYfe4uHfckCUhpRSlGgVS75oFkdAumn8AR02cnV9lChoBmgJaA9DCAYsuYpFEHBAlIaUUpRoFUuuaBZHQLpqCDbrTph1fZQoaAZoCWgPQwgX83NDU4lzQJSGlFKUaBVLyGgWR0C6airMLWqcdX2UKGgGaAloD0MIAb9GkiD/cUCUhpRSlGgVS8BoFkdAumpZx82Ji3V9lChoBmgJaA9DCGa/7nTnsnBAlIaUUpRoFUujaBZHQLpqkBUaQ3h1fZQoaAZoCWgPQwgw8x38RIlxQJSGlFKUaBVL0mgWR0C6apoNiH6/dX2UKGgGaAloD0MI+P9xwkTIcECUhpRSlGgVS6poFkdAumqiYXwb2nV9lChoBmgJaA9DCKUUdHsJT3NAlIaUUpRoFUu4aBZHQLpqq0qH4491fZQoaAZoCWgPQwi5wyYys3JwQJSGlFKUaBVLu2gWR0C6arOirT6SdX2UKGgGaAloD0MIWtb9Y6EZckCUhpRSlGgVS9xoFkdAumrd68g6l3V9lChoBmgJaA9DCIviVda2bnJAlIaUUpRoFUvJaBZHQLprGzT4L1F1fZQoaAZoCWgPQwggls0cEkBxQJSGlFKUaBVLz2gWR0C6a0m3jMmndX2UKGgGaAloD0MIOdbFbfT6cUCUhpRSlGgVS8FoFkdAumt1E0BOpXV9lChoBmgJaA9DCCnLEMe6n3FAlIaUUpRoFUu/aBZHQLprf2gFotd1fZQoaAZoCWgPQwjjbaXXJrJyQJSGlFKUaBVLyGgWR0C6a5VENOM3dX2UKGgGaAloD0MI97GC38YxcUCUhpRSlGgVS85oFkdAumutfw7T2HV9lChoBmgJaA9DCJ4I4jxcYnFAlIaUUpRoFUu5aBZHQLpr0nSfDk51fZQoaAZoCWgPQwgJMgIqnGBzQJSGlFKUaBVL4mgWR0C6a/4YaYNRdX2UKGgGaAloD0MImGw82GISc0CUhpRSlGgVS61oFkdAumwHmW+oL3V9lChoBmgJaA9DCPcGX5gMgnFAlIaUUpRoFUvBaBZHQLpsIK8+Ro11fZQoaAZoCWgPQwh8Yp0qX9VwQJSGlFKUaBVLvmgWR0C6bCShvitJdX2UKGgGaAloD0MIPIidKTSycUCUhpRSlGgVS8hoFkdAumxVMK1G9nV9lChoBmgJaA9DCHIVi9/UGHRAlIaUUpRoFUvGaBZHQLpsgQwK0D51fZQoaAZoCWgPQwg5Kcx7nMpyQJSGlFKUaBVLsWgWR0C6bJnJDE3sdX2UKGgGaAloD0MInUZaKu/Gc0CUhpRSlGgVS/1oFkdAumy7mlqJuXV9lChoBmgJaA9DCPT4vU1/2G9AlIaUUpRoFUueaBZHQLps0zsyBTZ1fZQoaAZoCWgPQwiHakqyjhdyQJSGlFKUaBVLxmgWR0C6bPDHsC1adX2UKGgGaAloD0MIfhmMEUmtcUCUhpRSlGgVS5toFkdAumz34FiazHV9lChoBmgJaA9DCE3WqIfoXHJAlIaUUpRoFUu9aBZHQLptCFR51Nh1fZQoaAZoCWgPQwjr/rEQnThvQJSGlFKUaBVLs2gWR0C6bRBCMPz4dX2UKGgGaAloD0MIgGCOHj9yckCUhpRSlGgVS6doFkdAum1V+EytWHV9lChoBmgJaA9DCP8EFyvqPmdAlIaUUpRoFU3oA2gWR0C6bViAMDwIdX2UKGgGaAloD0MI01CjkGQ5b0CUhpRSlGgVS6loFkdAum1ih24d63V9lChoBmgJaA9DCLJiuDoAt3JAlIaUUpRoFUvFaBZHQLpta7qptJp1fZQoaAZoCWgPQwgEcLN4MTJyQJSGlFKUaBVLo2gWR0C6bWvXkHUudX2UKGgGaAloD0MIM6SK4hV3cUCUhpRSlGgVS6loFkdAum14YixFAnV9lChoBmgJaA9DCHQIHAk0GXNAlIaUUpRoFUu1aBZHQLpt9xfOUt91fZQoaAZoCWgPQwhWuyaktbBxQJSGlFKUaBVL3WgWR0C6bgiH2ys0dX2UKGgGaAloD0MIWaSJd0ATckCUhpRSlGgVS9FoFkdAum4a1iONpHV9lChoBmgJaA9DCAtjC0EOvXJAlIaUUpRoFUvRaBZHQLpuUcvduYR1fZQoaAZoCWgPQwjwFHKlngNvQJSGlFKUaBVLqGgWR0C6blVQQ+UydX2UKGgGaAloD0MIMuauJaSycUCUhpRSlGgVS8JoFkdAum5qPbO/tnV9lChoBmgJaA9DCIS3ByEggHNAlIaUUpRoFUvCaBZHQLpucHiWE9N1fZQoaAZoCWgPQwjG4cyvJu5wQJSGlFKUaBVLvWgWR0C6bnbuUliSdX2UKGgGaAloD0MIB7MJMKyyckCUhpRSlGgVS9loFkdAum56SdOIqXV9lChoBmgJaA9DCJq0qbpHPXFAlIaUUpRoFUuZaBZHQLpukYp2ECh1fZQoaAZoCWgPQwigG5qyU8hvQJSGlFKUaBVLsmgWR0C6bq3ta6jGdX2UKGgGaAloD0MIB7EzhQ6KcUCUhpRSlGgVS69oFkdAum68C9ytFXV9lChoBmgJaA9DCI7KTdTShHFAlIaUUpRoFUu7aBZHQLpuvKAavRt1fZQoaAZoCWgPQwhtWFNZFIlwQJSGlFKUaBVLxmgWR0C6btmQr+YMdX2UKGgGaAloD0MIi/z6IXYEcUCUhpRSlGgVS7xoFkdAum7ej3225XV9lChoBmgJaA9DCHAnEeGfAHFAlIaUUpRoFUuSaBZHQLpvGRywOe91fZQoaAZoCWgPQwhUyJV6FkdwQJSGlFKUaBVLsWgWR0C6b0TMRpUQdX2UKGgGaAloD0MIpdqn4zGPcUCUhpRSlGgVS7VoFkdAum9ursByS3V9lChoBmgJaA9DCMKht3g4vnBAlIaUUpRoFUudaBZHQLpvnj9GZu11fZQoaAZoCWgPQwhtH/KWK7ZuQJSGlFKUaBVLr2gWR0C6b6CRB/qgdX2UKGgGaAloD0MI5Euo4DB5cECUhpRSlGgVS7ZoFkdAum+uMvRJE3V9lChoBmgJaA9DCD+Ne/Pb2XBAlIaUUpRoFUu1aBZHQLpvyvR7Z391fZQoaAZoCWgPQwhPBdzz/DJyQJSGlFKUaBVLq2gWR0C6b96Bd2PldX2UKGgGaAloD0MIrvVFQttwckCUhpRSlGgVS71oFkdAum/mEOAiFHV9lChoBmgJaA9DCCHM7V5uGnBAlIaUUpRoFUvPaBZHQLpv+fXf6451fZQoaAZoCWgPQwhLOV/svdhuQJSGlFKUaBVLrWgWR0C6b/9sN2C/dX2UKGgGaAloD0MIaHVyhqIwckCUhpRSlGgVS6xoFkdAunAq3y7PIHV9lChoBmgJaA9DCGpQNA/g5XFAlIaUUpRoFUvBaBZHQLpwMdNFjNJ1fZQoaAZoCWgPQwgqdF5jl9VvQJSGlFKUaBVLv2gWR0C6cFQrtmcwdX2UKGgGaAloD0MI2su20xbOckCUhpRSlGgVS+doFkdAunB6814xDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 470, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78a4b81d5480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78a4b81d5510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78a4b81d55a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78a4b81d5630>", "_build": "<function ActorCriticPolicy._build at 0x78a4b81d56c0>", "forward": "<function ActorCriticPolicy.forward at 0x78a4b81d5750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78a4b81d57e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78a4b81d5870>", "_predict": "<function ActorCriticPolicy._predict at 0x78a4b81d5900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78a4b81d5990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78a4b81d5a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78a4b81d5ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78a4b8167100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701354936612778331, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAYnLL5p1lS8H7Qtu0K1irmFH7g9YrZiOgAAgD8AAIA/jYFEvs4VwLyeytC7HPZiuteHKj5kmTI7AACAPwAAgD/z7xO+a0WPP4Nnrb4W1za/yKkhvk1lu70AAAAAAAAAAAAFyrwNs7M/nUzzvrO0671wmBk8/rYvvQAAAAAAAAAAM92dvBU/rz8ygPG+qiABv4eiQjyd2M47AAAAAAAAAACgZz2+GvR0PzFOAb/ewlm/OGV2vixcFb4AAAAAAAAAAEaggT54JaQ8Wsbxuq4eW7kwSjA+5vcYOgAAgD8AAIA/qN2Hvjtjnj/+qjS/1/kwv7ibm771j7q9AAAAAAAAAABm9w29uM2UP+6RM71ekCi/lbR1vAN3ebwAAAAAAAAAADMXpDvk1vo9ztKcPcPOjL5dt667qOPSPQAAAAAAAAAAALS/vXscorq2Los5oy6FNFvU5jqLNaC4AACAPwAAAADNkCs8UaqYP4oekD1TaDC/b8p4OsYtB7wAAAAAAAAAAM3nEj3SWqi7A2ZCvMWUcTstW+08FgRsvAAAgD8AAIA/s3Q9PtQywLwE5g483umpuqizK74hJoS7AACAPwAAgD+mew4+ZoW3PrP/yLzlkMy+bYgwPMQukLsAAAAAAAAAAK2JNr4O8by8MYiNu78gC7qfMic+J07BOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAJWUOd5IKMAWyUS8WMAXSUR0CdCrc0Ltu2dX2UKGgGR0Bvb00cfeUIaAdL92gIR0CdCxEYfnwHdX2UKGgGR0BtyAmb9ZRsaAdNFgFoCEdAnWDg44p+dHV9lChoBkdAVISvB7/n4mgHTegDaAhHQJ1j0x8D0UZ1fZQoaAZHQG9d3Jgb6xhoB0vPaAhHQJ1lMHxBmf51fZQoaAZHQG9pG+j/MntoB0u3aAhHQJ1nIFyJbdJ1fZQoaAZHQHCyH/LkjopoB0vZaAhHQJ1qqbVjI7x1fZQoaAZHQG96DQqqfe1oB0v8aAhHQJ1qwna37UJ1fZQoaAZHQHElnyAhB7hoB0vOaAhHQJ1rDYEnssx1fZQoaAZHQHBpZVKf4AVoB0v5aAhHQJ1rgwHqu8t1fZQoaAZHQG+iWZAprk9oB0vAaAhHQJ1sMGZ/kNp1fZQoaAZHQEA/AIIF/x5oB0u1aAhHQJ1t5WdVea91fZQoaAZHQHDs3e3x4INoB0uiaAhHQJ1uIRL9MsZ1fZQoaAZHQHKBLwjMV1xoB00MAWgIR0Cdbl9itq59dX2UKGgGR0BjjnfZVXFMaAdN6ANoCEdAnW+W2Xsw+XV9lChoBkdAcTPtpEhJRWgHS+xoCEdAnXMnWWhRInV9lChoBkdAcaC7YTTOPmgHS8FoCEdAnXPsBMi8nXV9lChoBkdAcVtWJaaCtmgHS85oCEdAnXUFfiPyTnV9lChoBkdAcoPB42S+xmgHS8toCEdAnXVXKwIMSnV9lChoBkdAYpmOsDGLk2gHTegDaAhHQJ11cehf0Ep1fZQoaAZHQEu4IC2c8T1oB0uXaAhHQJ11ha/yoXN1fZQoaAZHQHAMNB0IToNoB0vJaAhHQJ1141ZTyax1fZQoaAZHQHBT8aS9ugpoB0u3aAhHQJ13B7RfF751fZQoaAZHQGPPEu6ErXloB03oA2gIR0CdeMjASFoMdX2UKGgGR0BxZ+1og3cYaAdLymgIR0CdePNTtLL7dX2UKGgGR0Bw7suoP07KaAdNCwFoCEdAnXofSUkfLnV9lChoBkdAbp9Ev0yxiWgHS9BoCEdAnXwq06YE4nV9lChoBkdAcaWmcOLBK2gHS69oCEdAnXxJ4SpR43V9lChoBkdAcIGyVfNRnGgHS69oCEdAnXyvlIVdonV9lChoBkdAco1cxj8UEmgHS7RoCEdAnXzP4ZdfLXV9lChoBkdAb8GOQyRB/2gHS9toCEdAnX02WUr08XV9lChoBkdAb2Fpj+aScWgHS/1oCEdAnX+zp9qk/XV9lChoBkdAca1jLSuyNWgHS7loCEdAnYBHZ9NN8HV9lChoBkdAcPmoP07KaGgHTSYBaAhHQJ2CC5e7cwh1fZQoaAZHQHJZHTEzfrNoB00bAWgIR0Cdgs0b961LdX2UKGgGR0Bxva9kBjnWaAdL9mgIR0Cdgx1IAfdRdX2UKGgGR0Bx3TdKujh2aAdL8mgIR0CdhEpwCKaYdX2UKGgGR0BhD8Pxx1gZaAdN6ANoCEdAnYTEo0ALiXV9lChoBkdAbjuAtnPE9GgHS9JoCEdAnYWgNPP9k3V9lChoBkdAVzficXm/32gHTegDaAhHQJ2GJMURFql1fZQoaAZHQF/2u4gA6uJoB03oA2gIR0Cdh0SzgMtsdX2UKGgGR0ByhrlQuVX4aAdL+GgIR0Cdh4QGfPHDdX2UKGgGR0Bt9+vwEyLyaAdLwmgIR0Cdh7w++ueSdX2UKGgGR0Bb69itq59WaAdN6ANoCEdAnYih7zCk43V9lChoBkdASP+WUr08NmgHS6ZoCEdAnYlLh73PA3V9lChoBkdAcIHJT2nKn2gHS8toCEdAnYmrAk9lmXV9lChoBkdAcsl3L3bmEGgHTQIBaAhHQJ2KE2ycCo11fZQoaAZHQG6WHKnvUjNoB0vKaAhHQJ2KJt1p0wJ1fZQoaAZHQG6zruYx+KFoB018AWgIR0Cditw84giedX2UKGgGR0BxF8LWqcVhaAdL+2gIR0CdjK92HLzPdX2UKGgGR0ByFZr433pOaAdL+mgIR0CdjQZl4C6pdX2UKGgGR0Bv+qa9bor4aAdLxGgIR0CdjVvcafjCdX2UKGgGR0BxmSjVQQ+VaAdLvWgIR0CdjZL1VYITdX2UKGgGR0Bx2fIYFaB7aAdL7WgIR0CdjaBEroW6dX2UKGgGR0ByXOe+VTrFaAdL/2gIR0Cdj1BbOeJ6dX2UKGgGR0BxCazzErGzaAdLxGgIR0CdkBIAwPAgdX2UKGgGR0Bxv+z9jwx4aAdL9WgIR0CdkNGOdXkpdX2UKGgGR0Bwd7RNRFZxaAdL2WgIR0CdkNrXUYsNdX2UKGgGR0Bw5WRSxZ+yaAdNMwFoCEdAnZJF5rxiG3V9lChoBkdAY8Na4c3l0mgHTegDaAhHQJ2SUXDWK/F1fZQoaAZHQHBJxRhttQ9oB0vlaAhHQJ2UzXxvvSd1fZQoaAZHQG33eK8+Ro1oB0v2aAhHQJ2WLQUpNK11fZQoaAZHQHElsdPtUn5oB0viaAhHQJ2WLl8w5/91fZQoaAZHQHDNhg/keZJoB0vHaAhHQJ2XhCF9KEp1fZQoaAZHQG/pHO8kD6poB0u8aAhHQJ2ZQ9cKPXF1fZQoaAZHQG+yMoDxLChoB0u6aAhHQJ2bOEOAiFF1fZQoaAZHQHDf24iHIp9oB0v+aAhHQJ2bk75mAb11fZQoaAZHQG8eO9FnZkFoB0vTaAhHQJ2cR5s0pEx1fZQoaAZHQHHbZ8rqdH5oB0vEaAhHQJ2e5X0XgtR1fZQoaAZHQHJSKJZW7vpoB0u9aAhHQJ2f2n0kGA11fZQoaAZHQHA4LtZ3cHpoB0vwaAhHQJ2gwJY1YQt1fZQoaAZHQHHdGN3np0RoB00iAWgIR0Cdobehwl0HdX2UKGgGR0BtrAhhYvFnaAdL22gIR0CdoqbjcVQAdX2UKGgGR0Bw/XLhaTwEaAdLuWgIR0Cdosd07r9mdX2UKGgGR0BxXrWsijcmaAdLvWgIR0Cdoz3fQ8fWdX2UKGgGR0Bi87a0x/NJaAdN6ANoCEdAnaNj9sJpnHV9lChoBkdAYi6R+SbH62gHTegDaAhHQJ2kEaUA1el1fZQoaAZHQHB3ttQ9A5doB0vmaAhHQJ2lmN4qwyJ1fZQoaAZHQG6dInKGL1poB0vBaAhHQJ2nuZ4Oc2B1fZQoaAZHQHDrB+8XenBoB0vfaAhHQJ2oBjRUm2N1fZQoaAZHQHFMP1DjR2NoB0vMaAhHQJ2qF5prULF1fZQoaAZHQHAtKcqe9SNoB01WAmgIR0CdqoaNdZ7pdX2UKGgGR0BtD2Nm16VuaAdLwGgIR0CdqxT5O8CgdX2UKGgGR0BvgIkVvddnaAdLvmgIR0CdqyE/0NBodX2UKGgGR0BwX4mjTKDDaAdL1GgIR0Cdq3Gd7OVxdX2UKGgGR0BwG8Re1KGtaAdLzWgIR0CdrFiItUXIdX2UKGgGR0BduuL3sXzlaAdN6ANoCEdAnaxr/0dzXHV9lChoBkfAI8xlg+hXbWgHS2JoCEdAna5UVN5+pnV9lChoBkdAcbo9VWCEpWgHS8FoCEdAna+E8zQ/o3V9lChoBkdAcXJHgP3BYWgHS7toCEdAna+PSQYDT3V9lChoBkdAY4px7zCk42gHTegDaAhHQJ2xKlBQemx1fZQoaAZHQHFHsuanaWZoB0vAaAhHQJ2yqgSOBDp1fZQoaAZHQGF92nCO3lVoB03oA2gIR0CdsrNNahYedX2UKGgGR0BwsucLBsQ/aAdNGAFoCEdAnbUW5paibnV9lChoBkdAcd7ZTQ3PzGgHS/JoCEdAnbXNJe3QU3V9lChoBkdAYn1iG34KyGgHTegDaAhHQJ21zgflp491fZQoaAZHQGELO7g88tBoB03oA2gIR0CdthCWu5jIdX2UKGgGR0BxHHQgLZzxaAdNAQFoCEdAnbZi1E3KjnV9lChoBkdAcMH2606YFGgHS8FoCEdAnbbu9SMtLHV9lChoBkdAcZtWTX8O1GgHS+BoCEdAnbb3P/rB03VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ae01f26a66372cfb37a8138da20f96a42c3752ccd5938eaa11e85bd5e25334b
|
3 |
+
size 147961
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78a4b81d5480>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78a4b81d5510>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78a4b81d55a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78a4b81d5630>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78a4b81d56c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78a4b81d5750>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78a4b81d57e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78a4b81d5870>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78a4b81d5900>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78a4b81d5990>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78a4b81d5a20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78a4b81d5ab0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78a4b8167100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1701354936612778331,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAYnLL5p1lS8H7Qtu0K1irmFH7g9YrZiOgAAgD8AAIA/jYFEvs4VwLyeytC7HPZiuteHKj5kmTI7AACAPwAAgD/z7xO+a0WPP4Nnrb4W1za/yKkhvk1lu70AAAAAAAAAAAAFyrwNs7M/nUzzvrO0671wmBk8/rYvvQAAAAAAAAAAM92dvBU/rz8ygPG+qiABv4eiQjyd2M47AAAAAAAAAACgZz2+GvR0PzFOAb/ewlm/OGV2vixcFb4AAAAAAAAAAEaggT54JaQ8Wsbxuq4eW7kwSjA+5vcYOgAAgD8AAIA/qN2Hvjtjnj/+qjS/1/kwv7ibm771j7q9AAAAAAAAAABm9w29uM2UP+6RM71ekCi/lbR1vAN3ebwAAAAAAAAAADMXpDvk1vo9ztKcPcPOjL5dt667qOPSPQAAAAAAAAAAALS/vXscorq2Los5oy6FNFvU5jqLNaC4AACAPwAAAADNkCs8UaqYP4oekD1TaDC/b8p4OsYtB7wAAAAAAAAAAM3nEj3SWqi7A2ZCvMWUcTstW+08FgRsvAAAgD8AAIA/s3Q9PtQywLwE5g483umpuqizK74hJoS7AACAPwAAgD+mew4+ZoW3PrP/yLzlkMy+bYgwPMQukLsAAAAAAAAAAK2JNr4O8by8MYiNu78gC7qfMic+J07BOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAJWUOd5IKMAWyUS8WMAXSUR0CdCrc0Ltu2dX2UKGgGR0Bvb00cfeUIaAdL92gIR0CdCxEYfnwHdX2UKGgGR0BtyAmb9ZRsaAdNFgFoCEdAnWDg44p+dHV9lChoBkdAVISvB7/n4mgHTegDaAhHQJ1j0x8D0UZ1fZQoaAZHQG9d3Jgb6xhoB0vPaAhHQJ1lMHxBmf51fZQoaAZHQG9pG+j/MntoB0u3aAhHQJ1nIFyJbdJ1fZQoaAZHQHCyH/LkjopoB0vZaAhHQJ1qqbVjI7x1fZQoaAZHQG96DQqqfe1oB0v8aAhHQJ1qwna37UJ1fZQoaAZHQHElnyAhB7hoB0vOaAhHQJ1rDYEnssx1fZQoaAZHQHBpZVKf4AVoB0v5aAhHQJ1rgwHqu8t1fZQoaAZHQG+iWZAprk9oB0vAaAhHQJ1sMGZ/kNp1fZQoaAZHQEA/AIIF/x5oB0u1aAhHQJ1t5WdVea91fZQoaAZHQHDs3e3x4INoB0uiaAhHQJ1uIRL9MsZ1fZQoaAZHQHKBLwjMV1xoB00MAWgIR0Cdbl9itq59dX2UKGgGR0BjjnfZVXFMaAdN6ANoCEdAnW+W2Xsw+XV9lChoBkdAcTPtpEhJRWgHS+xoCEdAnXMnWWhRInV9lChoBkdAcaC7YTTOPmgHS8FoCEdAnXPsBMi8nXV9lChoBkdAcVtWJaaCtmgHS85oCEdAnXUFfiPyTnV9lChoBkdAcoPB42S+xmgHS8toCEdAnXVXKwIMSnV9lChoBkdAYpmOsDGLk2gHTegDaAhHQJ11cehf0Ep1fZQoaAZHQEu4IC2c8T1oB0uXaAhHQJ11ha/yoXN1fZQoaAZHQHAMNB0IToNoB0vJaAhHQJ1141ZTyax1fZQoaAZHQHBT8aS9ugpoB0u3aAhHQJ13B7RfF751fZQoaAZHQGPPEu6ErXloB03oA2gIR0CdeMjASFoMdX2UKGgGR0BxZ+1og3cYaAdLymgIR0CdePNTtLL7dX2UKGgGR0Bw7suoP07KaAdNCwFoCEdAnXofSUkfLnV9lChoBkdAbp9Ev0yxiWgHS9BoCEdAnXwq06YE4nV9lChoBkdAcaWmcOLBK2gHS69oCEdAnXxJ4SpR43V9lChoBkdAcIGyVfNRnGgHS69oCEdAnXyvlIVdonV9lChoBkdAco1cxj8UEmgHS7RoCEdAnXzP4ZdfLXV9lChoBkdAb8GOQyRB/2gHS9toCEdAnX02WUr08XV9lChoBkdAb2Fpj+aScWgHS/1oCEdAnX+zp9qk/XV9lChoBkdAca1jLSuyNWgHS7loCEdAnYBHZ9NN8HV9lChoBkdAcPmoP07KaGgHTSYBaAhHQJ2CC5e7cwh1fZQoaAZHQHJZHTEzfrNoB00bAWgIR0Cdgs0b961LdX2UKGgGR0Bxva9kBjnWaAdL9mgIR0Cdgx1IAfdRdX2UKGgGR0Bx3TdKujh2aAdL8mgIR0CdhEpwCKaYdX2UKGgGR0BhD8Pxx1gZaAdN6ANoCEdAnYTEo0ALiXV9lChoBkdAbjuAtnPE9GgHS9JoCEdAnYWgNPP9k3V9lChoBkdAVzficXm/32gHTegDaAhHQJ2GJMURFql1fZQoaAZHQF/2u4gA6uJoB03oA2gIR0Cdh0SzgMtsdX2UKGgGR0ByhrlQuVX4aAdL+GgIR0Cdh4QGfPHDdX2UKGgGR0Bt9+vwEyLyaAdLwmgIR0Cdh7w++ueSdX2UKGgGR0Bb69itq59WaAdN6ANoCEdAnYih7zCk43V9lChoBkdASP+WUr08NmgHS6ZoCEdAnYlLh73PA3V9lChoBkdAcIHJT2nKn2gHS8toCEdAnYmrAk9lmXV9lChoBkdAcsl3L3bmEGgHTQIBaAhHQJ2KE2ycCo11fZQoaAZHQG6WHKnvUjNoB0vKaAhHQJ2KJt1p0wJ1fZQoaAZHQG6zruYx+KFoB018AWgIR0Cditw84giedX2UKGgGR0BxF8LWqcVhaAdL+2gIR0CdjK92HLzPdX2UKGgGR0ByFZr433pOaAdL+mgIR0CdjQZl4C6pdX2UKGgGR0Bv+qa9bor4aAdLxGgIR0CdjVvcafjCdX2UKGgGR0BxmSjVQQ+VaAdLvWgIR0CdjZL1VYITdX2UKGgGR0Bx2fIYFaB7aAdL7WgIR0CdjaBEroW6dX2UKGgGR0ByXOe+VTrFaAdL/2gIR0Cdj1BbOeJ6dX2UKGgGR0BxCazzErGzaAdLxGgIR0CdkBIAwPAgdX2UKGgGR0Bxv+z9jwx4aAdL9WgIR0CdkNGOdXkpdX2UKGgGR0Bwd7RNRFZxaAdL2WgIR0CdkNrXUYsNdX2UKGgGR0Bw5WRSxZ+yaAdNMwFoCEdAnZJF5rxiG3V9lChoBkdAY8Na4c3l0mgHTegDaAhHQJ2SUXDWK/F1fZQoaAZHQHBJxRhttQ9oB0vlaAhHQJ2UzXxvvSd1fZQoaAZHQG33eK8+Ro1oB0v2aAhHQJ2WLQUpNK11fZQoaAZHQHElsdPtUn5oB0viaAhHQJ2WLl8w5/91fZQoaAZHQHDNhg/keZJoB0vHaAhHQJ2XhCF9KEp1fZQoaAZHQG/pHO8kD6poB0u8aAhHQJ2ZQ9cKPXF1fZQoaAZHQG+yMoDxLChoB0u6aAhHQJ2bOEOAiFF1fZQoaAZHQHDf24iHIp9oB0v+aAhHQJ2bk75mAb11fZQoaAZHQG8eO9FnZkFoB0vTaAhHQJ2cR5s0pEx1fZQoaAZHQHHbZ8rqdH5oB0vEaAhHQJ2e5X0XgtR1fZQoaAZHQHJSKJZW7vpoB0u9aAhHQJ2f2n0kGA11fZQoaAZHQHA4LtZ3cHpoB0vwaAhHQJ2gwJY1YQt1fZQoaAZHQHHdGN3np0RoB00iAWgIR0Cdobehwl0HdX2UKGgGR0BtrAhhYvFnaAdL22gIR0CdoqbjcVQAdX2UKGgGR0Bw/XLhaTwEaAdLuWgIR0Cdosd07r9mdX2UKGgGR0BxXrWsijcmaAdLvWgIR0Cdoz3fQ8fWdX2UKGgGR0Bi87a0x/NJaAdN6ANoCEdAnaNj9sJpnHV9lChoBkdAYi6R+SbH62gHTegDaAhHQJ2kEaUA1el1fZQoaAZHQHB3ttQ9A5doB0vmaAhHQJ2lmN4qwyJ1fZQoaAZHQG6dInKGL1poB0vBaAhHQJ2nuZ4Oc2B1fZQoaAZHQHDrB+8XenBoB0vfaAhHQJ2oBjRUm2N1fZQoaAZHQHFMP1DjR2NoB0vMaAhHQJ2qF5prULF1fZQoaAZHQHAtKcqe9SNoB01WAmgIR0CdqoaNdZ7pdX2UKGgGR0BtD2Nm16VuaAdLwGgIR0CdqxT5O8CgdX2UKGgGR0BvgIkVvddnaAdLvmgIR0CdqyE/0NBodX2UKGgGR0BwX4mjTKDDaAdL1GgIR0Cdq3Gd7OVxdX2UKGgGR0BwG8Re1KGtaAdLzWgIR0CdrFiItUXIdX2UKGgGR0BduuL3sXzlaAdN6ANoCEdAnaxr/0dzXHV9lChoBkfAI8xlg+hXbWgHS2JoCEdAna5UVN5+pnV9lChoBkdAcbo9VWCEpWgHS8FoCEdAna+E8zQ/o3V9lChoBkdAcXJHgP3BYWgHS7toCEdAna+PSQYDT3V9lChoBkdAY4px7zCk42gHTegDaAhHQJ2xKlBQemx1fZQoaAZHQHFHsuanaWZoB0vAaAhHQJ2yqgSOBDp1fZQoaAZHQGF92nCO3lVoB03oA2gIR0CdsrNNahYedX2UKGgGR0BwsucLBsQ/aAdNGAFoCEdAnbUW5paibnV9lChoBkdAcd7ZTQ3PzGgHS/JoCEdAnbXNJe3QU3V9lChoBkdAYn1iG34KyGgHTegDaAhHQJ21zgflp491fZQoaAZHQGELO7g88tBoB03oA2gIR0CdthCWu5jIdX2UKGgGR0BxHHQgLZzxaAdNAQFoCEdAnbZi1E3KjnV9lChoBkdAcMH2606YFGgHS8FoCEdAnbbu9SMtLHV9lChoBkdAcZtWTX8O1GgHS+BoCEdAnbb3P/rB03VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ad5effc5a349a9166b8ab3d5ef2bf9081c17d0ce9b24c73c41d68272e13008e
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac22659b9dd2df682f2a377cc10f543ccbb58c8ba7157ce079b7842ee508035b
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd89b2e33644c987ce50aa46dbb2c9d5b131ee9175dbfa4d812feaf65ff9b370
|
3 |
+
size 109270
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 253.254961, "std_reward": 41.86701699425804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-30T15:28:37.620484"}
|