File size: 6,129 Bytes
b89d38f
 
 
 
d2544e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89d38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2544e1
 
 
b89d38f
d2544e1
b89d38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2544e1
 
 
b89d38f
 
 
d2544e1
b89d38f
 
 
 
 
 
d2544e1
b89d38f
d2544e1
 
b89d38f
 
d2544e1
b89d38f
 
d2544e1
b89d38f
d2544e1
 
 
b89d38f
 
 
 
 
d2544e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from transformers import PreTrainedModel, PretrainedConfig

class GPTConfig(PretrainedConfig):
    model_type = "gpt"

    def __init__(
        self,
        vocab_size=50257,
        block_size=128,
        n_layer=6,
        n_head=6,
        n_embd=384,
        dropout=0.0,
        bias=True,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.block_size = block_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_embd = n_embd
        self.dropout = dropout
        self.bias = bias

class LayerNorm(nn.Module):
    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, x):
        return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.flash = hasattr(F, 'scaled_dot_product_attention')
        if not self.flash:
            self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)

        if self.flash:
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True)
        else:
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v

        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln1 = LayerNorm(config.n_embd, config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln2 = LayerNorm(config.n_embd, config.bias)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln1(x))
        x = x + self.mlp(self.ln2(x))
        return x

class GPT(PreTrainedModel):
    config_class = GPTConfig

    def __init__(self, config):
        super().__init__(config)
        self.transformer = nn.ModuleDict(dict(
            wte=nn.Embedding(config.vocab_size, config.n_embd),
            wpe=nn.Embedding(config.block_size, config.n_embd),
            drop=nn.Dropout(config.dropout),
            h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f=LayerNorm(config.n_embd, config.bias),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight

        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, input_ids, labels=None):
        device = input_ids.device
        b, t = input_ids.size()
        assert t <= self.config.block_size
        pos = torch.arange(0, t, dtype=torch.long, device=device)

        tok_emb = self.transformer.wte(input_ids)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)

        if labels is not None:
            logits = self.lm_head(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)
            return {'logits': logits, 'loss': loss}
        else:
            logits = self.lm_head(x[:, [-1], :])
            return {'logits': logits}

    @torch.no_grad()
    def generate(self, input_ids, max_new_tokens, temperature=1.0, top_k=None):
        for _ in range(max_new_tokens):
            idx_cond = input_ids if input_ids.size(1) <= self.config.block_size else input_ids[:, -self.config.block_size:]
            out = self(idx_cond)
            logits = out['logits'][:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            input_ids = torch.cat((input_ids, idx_next), dim=1)
        return input_ids