File size: 7,111 Bytes
b89d38f
 
 
 
d2544e1
f8f40b7
d2544e1
 
f8f40b7
d2544e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89d38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f40b7
b89d38f
 
 
 
 
 
f8f40b7
 
 
 
 
 
 
b89d38f
 
 
 
 
 
 
 
 
 
 
f8f40b7
b89d38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f40b7
de13944
 
b89d38f
de13944
b89d38f
d2544e1
 
f8f40b7
d2544e1
b89d38f
d2544e1
b89d38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f40b7
d2544e1
 
b89d38f
 
 
f8f40b7
 
 
d2544e1
b89d38f
 
 
f8f40b7
 
 
 
 
 
81beb99
 
f8f40b7
d2544e1
 
f8f40b7
 
 
 
 
 
 
b89d38f
 
6e67cf8
384a482
d2544e1
 
 
b89d38f
 
 
 
 
d2544e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast

class GPTConfig(PretrainedConfig):
    model_type = "babylang"

    def __init__(
        self,
        vocab_size=50257,
        block_size=128,
        n_layer=6,
        n_head=6,
        n_embd=384,
        dropout=0.0,
        bias=True,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.block_size = block_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_embd = n_embd
        self.dropout = dropout
        self.bias = bias

class LayerNorm(nn.Module):
    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, x):
        return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.flash = hasattr(F, 'scaled_dot_product_attention')
        if not self.flash:
            self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))

    def forward(self, x, layer_past=None):
        B, T, C = x.size()
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)

        if layer_past is not None:
            past_key, past_value = layer_past
            k = torch.cat((past_key, k), dim=-2)
            v = torch.cat((past_value, v), dim=-2)

        present = (k, v)

        if self.flash:
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True)
        else:
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v

        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        return y, present

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln1 = LayerNorm(config.n_embd, config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln2 = LayerNorm(config.n_embd, config.bias)
        self.mlp = MLP(config)

    def forward(self, x, layer_past=None):
        attn_output, present = self.attn(self.ln1(x), layer_past=layer_past)
        x = x + attn_output
        x = x + self.mlp(self.ln2(x))
        return x, present

class GPT(PreTrainedModel):
    config_class = GPTConfig
    base_model_prefix = "babylang"

    def __init__(self, config):
        super().__init__(config)
        self.transformer = nn.ModuleDict(dict(
            wte=nn.Embedding(config.vocab_size, config.n_embd),
            wpe=nn.Embedding(config.block_size, config.n_embd),
            drop=nn.Dropout(config.dropout),
            h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f=LayerNorm(config.n_embd, config.bias),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight

        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, input_ids, past_key_values=None, attention_mask=None, labels=None):
        device = input_ids.device
        b, t = input_ids.size()
        assert t <= self.config.block_size
        pos = torch.arange(0, t, dtype=torch.long, device=device)

        if past_key_values is not None:
            pos = pos[-1].unsqueeze(0)

        tok_emb = self.transformer.wte(input_ids)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)

        new_past_key_values = []
        for i, block in enumerate(self.transformer.h):
            x, past = block(x, layer_past=past_key_values[i] if past_key_values is not None else None)
            new_past_key_values.append(past)

        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)

        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)

        return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=new_past_key_values)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)
        return {"input_ids": input_ids, "past_key_values": past_key_values}

    @torch.no_grad()
    def generate(self, input_ids, max_length, temperature=1.0, top_k=None, attention_mask=None, **kwargs):
        for _ in range(max_length - input_ids.size(1)):
            idx_cond = input_ids if input_ids.size(1) <= self.config.block_size else input_ids[:, -self.config.block_size:]
            out = self(idx_cond)
            logits = out['logits'][:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            input_ids = torch.cat((input_ids, idx_next), dim=1)
        return input_ids