File size: 7,111 Bytes
b89d38f d2544e1 f8f40b7 d2544e1 f8f40b7 d2544e1 b89d38f f8f40b7 b89d38f f8f40b7 b89d38f f8f40b7 b89d38f f8f40b7 de13944 b89d38f de13944 b89d38f d2544e1 f8f40b7 d2544e1 b89d38f d2544e1 b89d38f f8f40b7 d2544e1 b89d38f f8f40b7 d2544e1 b89d38f f8f40b7 81beb99 f8f40b7 d2544e1 f8f40b7 b89d38f 6e67cf8 384a482 d2544e1 b89d38f d2544e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
class GPTConfig(PretrainedConfig):
model_type = "babylang"
def __init__(
self,
vocab_size=50257,
block_size=128,
n_layer=6,
n_head=6,
n_embd=384,
dropout=0.0,
bias=True,
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.block_size = block_size
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
self.dropout = dropout
self.bias = bias
class LayerNorm(nn.Module):
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, x):
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.flash = hasattr(F, 'scaled_dot_product_attention')
if not self.flash:
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x, layer_past=None):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat((past_key, k), dim=-2)
v = torch.cat((past_value, v), dim=-2)
present = (k, v)
if self.flash:
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_dropout.p if self.training else 0.0, is_causal=True)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y, present
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = LayerNorm(config.n_embd, config.bias)
self.attn = CausalSelfAttention(config)
self.ln2 = LayerNorm(config.n_embd, config.bias)
self.mlp = MLP(config)
def forward(self, x, layer_past=None):
attn_output, present = self.attn(self.ln1(x), layer_past=layer_past)
x = x + attn_output
x = x + self.mlp(self.ln2(x))
return x, present
class GPT(PreTrainedModel):
config_class = GPTConfig
base_model_prefix = "babylang"
def __init__(self, config):
super().__init__(config)
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=LayerNorm(config.n_embd, config.bias),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, input_ids, past_key_values=None, attention_mask=None, labels=None):
device = input_ids.device
b, t = input_ids.size()
assert t <= self.config.block_size
pos = torch.arange(0, t, dtype=torch.long, device=device)
if past_key_values is not None:
pos = pos[-1].unsqueeze(0)
tok_emb = self.transformer.wte(input_ids)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
new_past_key_values = []
for i, block in enumerate(self.transformer.h):
x, past = block(x, layer_past=past_key_values[i] if past_key_values is not None else None)
new_past_key_values.append(past)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1)
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=new_past_key_values)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
return {"input_ids": input_ids, "past_key_values": past_key_values}
@torch.no_grad()
def generate(self, input_ids, max_length, temperature=1.0, top_k=None, attention_mask=None, **kwargs):
for _ in range(max_length - input_ids.size(1)):
idx_cond = input_ids if input_ids.size(1) <= self.config.block_size else input_ids[:, -self.config.block_size:]
out = self(idx_cond)
logits = out['logits'][:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
input_ids = torch.cat((input_ids, idx_next), dim=1)
return input_ids
|