|
--- |
|
license: agpl-3.0 |
|
pipeline_tag: image-segmentation |
|
tags: |
|
- medical |
|
- biology |
|
--- |
|
|
|
## VascX models |
|
|
|
This repository contains the instructions for using the VascX models from the paper [VascX Models: Model Ensembles for Retinal Vascular Analysis from Color Fundus Images](https://arxiv.org/abs/2409.16016). |
|
|
|
The model weights are in [huggingface](https://huggingface.co/Eyened/vascx). |
|
|
|
<img src="imgs/CHASEDB1_12R_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/CHASEDB1_12R.png" width="240" height="240" style="display:inline"> |
|
|
|
<img src="imgs/DRIVE_22_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/DRIVE_22.png" width="240" height="240" style="display:inline"> |
|
|
|
<img src="imgs/HRF_04_g_rgb.png" width="240" height="240" style="display:inline"><img src="imgs/HRF_04_g.png" width="240" height="240" style="display:inline"> |
|
|
|
### Installation |
|
|
|
To install the entire fundus analysis pipeline including fundus preprocessing, model inference code and vascular biomarker extraction: |
|
|
|
1. Create a conda or virtualenv virtual environment, or otherwise ensure a clean environment. |
|
|
|
2. Install the [rtnls_inference package](https://github.com/Eyened/retinalysis-inference). |
|
|
|
### Usage |
|
|
|
To speed up re-execution of vascx we recommend to run the preprocessing and segmentation steps separately: |
|
|
|
1. Preprocessing. See [this notebook](./notebooks/0_preprocess.ipynb). This step is CPU-heavy and benefits from parallelization (see notebook). |
|
|
|
2. Inference. See [this notebook](./notebooks/1_segment_preprocessed.ipynb). All models can be ran in a single GPU with >10GB VRAM. |
|
|