File size: 7,179 Bytes
8b9f52e cbe6ccb 8b9f52e efc51b9 8b9f52e 242252a 8b9f52e 242252a e8ef9b6 8b9f52e cbe6ccb 8b9f52e 2668862 8b9f52e cbe6ccb 8b9f52e 8c8627d 8b9f52e 8c8627d 3d01aaf 8b9f52e 8c8627d 8b9f52e a32302e 8b9f52e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: cc-by-nc-4.0
pipeline_tag: automatic-speech-recognition
---
# SimulSeamless
[![ACL Anthology](https://img.shields.io/badge/anthology-brightgreen?logo=data%3Aimage%2Fsvg%2Bxml%3Bbase64%2CPD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiIHN0YW5kYWxvbmU9Im5vIj8%2BCjwhLS0gQ3JlYXRlZCB3aXRoIElua3NjYXBlIChodHRwOi8vd3d3Lmlua3NjYXBlLm9yZy8pIC0tPgo8c3ZnCiAgIHhtbG5zOnN2Zz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciCiAgIHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZyIKICAgdmVyc2lvbj0iMS4wIgogICB3aWR0aD0iNjgiCiAgIGhlaWdodD0iNjgiCiAgIGlkPSJzdmcyIj4KICA8ZGVmcwogICAgIGlkPSJkZWZzNCIgLz4KICA8cGF0aAogICAgIGQ9Ik0gNDEuOTc3NTUzLC0yLjg0MjE3MDllLTAxNCBDIDQxLjk3NzU1MywxLjc2MTc4IDQxLjk3NzU1MywxLjQ0MjExIDQxLjk3NzU1MywzLjAxNTggTCA3LjQ4NjkwNTQsMy4wMTU4IEwgMCwzLjAxNTggTCAwLDEwLjUwMDc5IEwgMCwzOC40Nzg2NyBMIDAsNDYgTCA3LjQ4NjkwNTQsNDYgTCA0OS41MDA4MDIsNDYgTCA1Ni45ODc3MDgsNDYgTCA2OCw0NiBMIDY4LDMwLjk5MzY4IEwgNTYuOTg3NzA4LDMwLjk5MzY4IEwgNTYuOTg3NzA4LDEwLjUwMDc5IEwgNTYuOTg3NzA4LDMuMDE1OCBDIDU2Ljk4NzcwOCwxLjQ0MjExIDU2Ljk4NzcwOCwxLjc2MTc4IDU2Ljk4NzcwOCwtMi44NDIxNzA5ZS0wMTQgTCA0MS45Nzc1NTMsLTIuODQyMTcwOWUtMDE0IHogTSAxNS4wMTAxNTUsMTcuOTg1NzggTCA0MS45Nzc1NTMsMTcuOTg1NzggTCA0MS45Nzc1NTMsMzAuOTkzNjggTCAxNS4wMTAxNTUsMzAuOTkzNjggTCAxNS4wMTAxNTUsMTcuOTg1NzggeiAiCiAgICAgc3R5bGU9ImZpbGw6I2VkMWMyNDtmaWxsLW9wYWNpdHk6MTtmaWxsLXJ1bGU6ZXZlbm9kZDtzdHJva2U6bm9uZTtzdHJva2Utd2lkdGg6MTIuODk1NDExNDk7c3Ryb2tlLWxpbmVjYXA6YnV0dDtzdHJva2UtbGluZWpvaW46bWl0ZXI7c3Ryb2tlLW1pdGVybGltaXQ6NDtzdHJva2UtZGFzaGFycmF5Om5vbmU7c3Ryb2tlLWRhc2hvZmZzZXQ6MDtzdHJva2Utb3BhY2l0eToxIgogICAgIHRyYW5zZm9ybT0idHJhbnNsYXRlKDAsIDExKSIKICAgICBpZD0icmVjdDIxNzgiIC8%2BCjwvc3ZnPgo%3D&label=ACL&labelColor=white&color=red)](https://aclanthology.org/2024.iwslt-1.11/)
Code for the paper: ["SimulSeamless: FBK at IWSLT 2024 Simultaneous Speech Translation"](http://arxiv.org/abs/2406.14177) published at IWSLT 2024.
## 📎 Requirements
- To run the [🤖 Inference using your environment](#🤖-inference-using-your-environment), please make sure that [FBK-fairseq](https://github.com/hlt-mt/FBK-fairseq),
[SimulEval v1.1.0](https://github.com/facebookresearch/SimulEval)
and [HuggingFace Transformers](https://huggingface.co/docs/transformers/index) are installed.
- To run the [💬 Inference using docker](#💬-inference-using-docker), install [SimulEval v1.1.0](https://github.com/facebookresearch/SimulEval) using commit
`f1f5b9a69a47496630aa43605f1bd46e5484a2f4`.
## 🤖 Inference using your environment
Set `--source`, and `--target` as described in the
[Fairseq Simultaneous Translation repository](https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/simulst_mustc_example.md#inference--evaluation):
`${LIST_OF_AUDIO}` is the list of audio paths and `${TGT_FILE}` the segment-wise references in the
target language.
Set `${TGT_LANG}` as the target language code in 3 characters. The list of supported language codes is [available here](https://huggingface.co/facebook/hf-seamless-m4t-medium/blob/main/special_tokens_map.json).
For the source language, no language code has to be specified.
Depending on the target language, set `${LATENCY_UNIT}` to either `word` (e.g., for German) or
`char` (e.g., for Japanese), and `${BLEU_TOKENIZER}` to either `13a` (i.e., the standard sacreBLEU
tokenizer used, for example, to evaluate German) or `char` (e.g., to evaluate character-level
languages such as Chinese or Japanese).
The simultaneous inference of SimulSeamless is based on
[AlignAtt](https://github.com/hlt-mt/FBK-fairseq/blob/master/fbk_works/ALIGNATT_SIMULST_AGENT_INTERSPEECH2023.md), thus the __f__ parameter (`${FRAME}`) and the
layer from which to extract the attention scores (`${LAYER}`) have to be set accordingly.
### Instruction to replicate IWSLT 2024 results ↙️
To replicate the results obtained to achieve 2 seconds of latency (measured by AL) on the test sets
used by [the IWSLT 2024 Simultaneous track](https://iwslt.org/2024/simultaneous), use the following
values:
- **en-de**: `${TGT_LANG}=deu`, `${FRAME}=6`, `${LAYER}=3`, `${SEG_SIZE}=1000`
- **en-ja**: `${TGT_LANG}=jpn`, `${FRAME}=1`, `${LAYER}=0`, `${SEG_SIZE}=400`
- **en-zh**: `${TGT_LANG}=cmn`, `${FRAME}=1`, `${LAYER}=3`, `${SEG_SIZE}=800`
- **cs-en**: `${TGT_LANG}=eng`, `${FRAME}=9`, `${LAYER}=3`, `${SEG_SIZE}=1000`
❗️Please notice that `${FRAME}` can be adjusted to achieve lower/higher latency.
The SimulSeamless can be run with:
```bash
simuleval \
--agent-class examples.speech_to_text.simultaneous_translation.agents.v1_1.simul_alignatt_seamlessm4t.AlignAttSeamlessS2T \
--source ${LIST_OF_AUDIO} \
--target ${TGT_FILE} \
--data-bin ${DATA_ROOT} \
--model-size medium --target-language ${TGT_LANG} \
--extract-attn-from-layer ${LAYER} --num-beams 5 \
--frame-num ${FRAME} \
--source-segment-size ${SEG_SIZE} \
--quality-metrics BLEU --latency-metrics LAAL AL ATD --computation-aware \
--eval-latency-unit ${LATENCY_UNIT} --sacrebleu-tokenizer ${BLEU_TOKENIZER} \
--output ${OUT_DIR} \
--device cuda:0
```
If not already stored in your system, the SeamlessM4T model will be downloaded automatically when
running the script. The output will be saved in `${OUT_DIR}`.
We suggest running the inference using a GPU to speed up the process but the system can be run on
any device (e.g., CPU) supported by SimulEval and HuggingFace.
## 💬 Inference using docker
To run SimulSeamless using docker, follow the steps below:
1. Download the docker file by cloning this repository
2. Load the docker image:
```bash
docker load -i simulseamless.tar
```
3. Start the SimulEval standalone with GPU enabled:
```bash
docker run -e TGTLANG=${TGT_LANG} -e FRAME=${FRAME} -e LAYER=${LAYER} \
-e BLEU_TOKENIZER=${BLEU_TOKENIZER} -e LATENCY_UNIT=${LATENCY_UNIT} \
-e DEV=cuda:0 --gpus all --shm-size 32G \
-p 2024:2024 simulseamless:latest
```
4. Start the remote evaluation with:
```bash
simuleval \
--remote-eval --remote-port 2024 \
--source ${LIST_OF_AUDIO} --target ${TGT_FILE} \
--source-type speech --target-type text \
--source-segment-size ${SEG_SIZE} \
--eval-latency-unit ${LATENCY_UNIT} --sacrebleu-tokenizer ${BLEU_TOKENIZER} \
--output ${OUT_DIR}
```
To set, `${TGT_LANG}`, `${FRAME}`, `${LAYER}`, `${BLEU_TOKENIZER}`, `${LATENCY_UNIT}`,
`${LIST_OF_AUDIO}`, `${TGT_FILE}`, `${SEG_SIZE}`, and `${OUT_DIR}` refer to
[🤖 Inference using your environment](#🤖-inference-using-your-environment).
## 📍Citation
```bibtex
@inproceedings{papi-etal-2024-simulseamless,
title = "{S}imul{S}eamless: {FBK} at {IWSLT} 2024 Simultaneous Speech Translation",
author = "Papi, Sara and
Gaido, Marco and
Negri, Matteo and
Bentivogli, Luisa",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Carpuat, Marine",
booktitle = "Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.iwslt-1.11",
pages = "72--79",
}
``` |