FINGU-AI's picture
Update README.md
1b42810 verified
---
base_model: Qwen/Qwen2.5-32B-Instruct
library_name: peft
license: mit
language:
- en
- ko
- zh
- pt
- ja
- uz
- tl
- th
- vi
- id
---
# FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4
## Overview
`FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4` is a powerful causal language model designed for a variety of natural language processing (NLP) tasks, including machine translation, text generation, and chat-based applications. This model is particularly useful for translating between Korean and Uzbek, as well as supporting other custom NLP tasks through flexible input.
## Model Details
- **Model ID**: `FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4`
- **Architecture**: Causal Language Model (LM)
- **Parameters**: 32 billion
- **Precision**: Torch BF16 for efficient GPU memory usage
- **Attention**: SDPA (Scaled Dot-Product Attention)
- **Primary Use Case**: Translation (e.g., Korean to Uzbek), text generation, and dialogue systems.
## Example Usage
### Installation
Make sure to install the required packages:
```bash
pip install torch transformers
```
### Loading the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Model and Tokenizer
model_id = 'FINGU-AI/Qwen2.5-32B-Lora-HQ-e-4'
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model.to('cuda')
# Input Messages for Translation
messages = [
{"role": "system", "content": "translate korean to Uzbek"},
{"role": "user", "content": """์ƒˆ๋กœ์šด ์€ํ–‰ ๊ณ„์ขŒ๋ฅผ ๊ฐœ์„คํ•˜๋Š” ์ ˆ์ฐจ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:
1. ๊ณ„์ขŒ ๊ฐœ์„ค ๋ชฉ์ ๊ณผ ์‹ ๋ถ„ ํ™•์ธ์„ ์œ„ํ•œ ์„œ๋ฅ˜ ์ œ์ถœ
2. ์„œ๋ฅ˜ ๊ฒ€ํ†  ๊ณผ์ •์„ ๊ฑฐ์น˜๋Š” ๊ฒƒ
3. ๊ณ ๊ฐ๋‹˜์˜ ์‹ ์› ํ™•์ธ ์ ˆ์ฐจ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ
4. ๋ชจ๋“  ์ ˆ์ฐจ๊ฐ€ ์™„๋ฃŒ๋˜๋ฉด ๊ณ„์ขŒ ๊ฐœ์„ค์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
๊ณ„์ขŒ ๊ฐœ์„ค์„ ์›ํ•˜์‹œ๋Š” ๊ฒฝ์šฐ, ์‹ ๋ถ„์ฆ๊ณผ ํ•จ๊ป˜ ๋ฐฉ๋ฌธํ•ด ์ฃผ์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.
"""},
]
# Tokenize and Generate Response
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to('cuda')
outputs = model.generate(
input_ids,
max_new_tokens=500,
do_sample=True,
)
# Decode and Print the Translation
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```